Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 24(13): 6910-7, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18507407

ABSTRACT

The structure and electrical properties of self-assembled monolayers of cyclic aromatic and aliphatic dithioacetamides (1,4-bis(mercaptoacetamido)benzene and 1,4-bis(mercaptoacetamido)cyclohexane) and of mixed dithioacetamide/alkanethiol monolayers are characterized by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM) and contact angle goniometry. Both dithioacetamides are found to pack densely on Au(111), however the monolayers are poorly ordered as a result of hydrogen bond formation between the amide groups. The coassembly and the insertion method are compared for the formation of mixed dithioacetamide/alkanethiol monolayers. By coassembly, islands of dithioacetamides in a dodecanethiol matrix can only be obtained at a low dithioacetamide/dodecanethiol concentration ratio in solution (1/10) and by thermal annealing of the resulting monolayers. Small and well defined dithioacetamide domains are realized by insertion of dithioacetamides into defect sites of closely packed octanethiol monolayers. These domains are used to determine the molecular conductance by means of STM height profiles and molecular lengths resulting from density functional theory (DFT) calculations. The difference in the tunneling decay constant beta measured for aromatic dithioacetamides (beta = 0.74-0.76/A) and for aliphatic dithioacetamides (beta = 0.84-0.91/A) highlights the influence of the conjugation within the cyclic core on molecular conductance.


Subject(s)
Gold/chemistry , Thioacetamide/chemistry , Microscopy, Scanning Tunneling , Models, Molecular , Molecular Conformation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...