Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Antibiotics (Basel) ; 13(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39061319

ABSTRACT

Calcium hydroxide represents the most commonly used intracanal dressing between sessions; however, it may not be effective against all types of microorganisms. Several compounds of plant origin have attracted increasing attention from researchers in recent years. The objective of this study was to evaluate the cytocompatibility and antimicrobial activity of calcium hydroxide associated with the essential oil of Cyperus articulatus and the new bioceramic intracanal medicament Bio-C Temp®. Five experimental groups were designed: group Ca-C. articulatus essential oil; group CHPG-calcium hydroxide associated with propylene glycol; group CHCa-essential oil of C. articulatus associated with calcium hydroxide; and group U-UltraCal® XS; group BCT-Bio-C Temp®. The control group was a culture medium. Cytocompatibility was assessed by the methyltetrazolium (MTT) assay after exposure of the Saos-2 human osteoblast-like cell line to dilutions of commercial products/associations for 24 h and 72 h. The antimicrobial activity against mature Enterococcus faecalis biofilm was evaluated by the crystal violet assay. All commercial products/associations showed a cell viability similar to or even higher than the control group (p > 0.05) for both periods evaluated. C. articulatus essential oil associated or not with calcium hydroxide showed better antibiofilm capacity. C. articulatus associated or not with calcium hydroxide showed superior cytocompatibility and antimicrobial capacity, representing a promissory intracanal medicament.

2.
Int J Food Microbiol ; 422: 110813, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38970997

ABSTRACT

Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.


Subject(s)
Gelatin , Hot Temperature , RNA, Ribosomal, 16S , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spores, Bacterial , Spores, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Virulence/genetics , Food Microbiology , Bacillus/genetics , Bacillus/isolation & purification
3.
J Fungi (Basel) ; 10(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39057346

ABSTRACT

BACKGROUND: Approximately 60% of individuals with cystic fibrosis (CF) are affected by Aspergillus fumigatus infection. This condition is correlated with a decline in lung function and is identified as an independent risk factor contributing to hospital admissions among CF patients. This study investigates the dynamic interplay of A. fumigatus within the context of CF patients, tracing its evolution over time, with a specific emphasis on colonization dynamics. METHODS: An analysis was conducted on 83 sequential A. fumigatus isolates derived from sputum samples of six patients receiving care at a renowned CF hospital in Brazil. Employing microsatellite genotyping techniques, alongside an investigation into cyp51A gene mutations, this research sheds light on the genetic variations, colonization, and resistance of A. fumigatus within the CF respiratory environment. RESULTS: Our research findings indicate that CF patients can harbor A. fumigatus strains from the same clonal complexes for prolonged periods. Additionally, we identified that clinical isolates have the potential to spread among patients in the same healthcare facility, evidencing hospital contamination. Two patients who underwent long-term Itraconazole treatment did not show phenotypic resistance. However, one of these patients exhibited mutations in the cyp51A gene, indicating the need to monitor resistance to azoles in these patients colonized for long periods by A. fumigatus. We also observed co-colonization or co-infection involving multiple genotypes in all patients over time. CONCLUSION: This comprehensive examination offers valuable insights into the pathogenesis of A. fumigatus infections in CF patients, potentially shaping future therapeutic strategies and management approaches. This enhanced understanding contributes to our knowledge of A. fumigatus impact on disease progression in individuals with cystic fibrosis. Additionally, the study provides evidence of cross-contamination among patients undergoing treatment at the same hospital.

4.
Article in English | MEDLINE | ID: mdl-38865572

ABSTRACT

Hyalohyphomycosis and phaeohyphomycosis are groups of mycoses caused by several agents and show different clinical manifestations. We report a case of an immunocompromised patient who presented rare manifestations of opportunistic mycoses: mycetoma-like hyalohyphomycosis on his right foot caused by Colletotrichum gloeosporioides, followed by cutaneous phaeohyphomycosis on his right forearm caused by Exophiala oligosperma. Further to the rarity of this case, the patient's lesion on the foot shows that the clinical aspects of mycetomas could falsely appear in other fungal infections similar to hyalohyphomycosis. We also show that the muriform cells that were seen in the direct and anatomopathological examination of the skin are not pathognomonic of chromoblastomycosis, as observed in the lesion of the patient's forearm.


Subject(s)
Chromoblastomycosis , Mycetoma , Humans , Male , Chromoblastomycosis/pathology , Chromoblastomycosis/diagnosis , Chromoblastomycosis/microbiology , Chromoblastomycosis/drug therapy , Mycetoma/pathology , Mycetoma/microbiology , Mycetoma/diagnosis , Mycetoma/drug therapy , Diagnosis, Differential , Immunocompromised Host , Hyalohyphomycosis/pathology , Hyalohyphomycosis/microbiology , Hyalohyphomycosis/diagnosis , Exophiala/isolation & purification , Middle Aged
5.
Access Microbiol ; 6(4)2024.
Article in English | MEDLINE | ID: mdl-38737802

ABSTRACT

Aspergillus stands as the predominant fungal genus in the airways of cystic fibrosis (CF) patients, significantly contributing to their morbidity and mortality. Aspergillus fumigatus represents the primary causative species for infections, though the emergence of rare species within the Aspergillus section Fumigati has become noteworthy. Among these, Aspergillus lentulus is particularly significant due to its frequent misidentification and intrinsic resistance to azole antifungal agents. In the management of invasive aspergillosis and resistant infections, combination antifungal therapy has proven to be an effective approach. This report documents a case involving the death of a CF patient due to a pulmonary exacerbation linked to the colonization of multiple Aspergillus species, including A. lentulus, A. fumigatus, and A. terreus, and treated with Itraconazole (ITC) monotherapy. We delineated the procedures used to characterize the Aspergillus isolates in clinical settings and simulated in vitro the impact of the combination antifungal therapy on the isolates obtained from the patient. We evaluated three different combinations: Amphotericin B (AMB)+Voriconazole (VRC), AMB+Anidulafungin (AND), and VRC+AND. Notably, all strains isolated from the patient exhibited a significant decrease in their minimum inhibitory concentration (MIC) or minimum effective concentration (MEC) values when treated with all antifungal combinations. The VRC+AMB combination demonstrated the most synergistic effects. This case report emphasizes the critical importance of susceptibility testing and precise identification of Aspergillus species to enhance patient prognosis. It also underscores the potential benefits of combined antifungal treatment, which, in this case, could have led to a more favourable patient outcome.

6.
Hematol., Transfus. Cell Ther. (Impr.) ; 46(1): 14-21, Jan.-Mar. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557892

ABSTRACT

Introduction The hemogram and hemogram-derivative ratios (HDRs) are becoming markers of the severity and mortality of COVID-19. We evaluated the hemograms and serial weekly HDRs [neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocyte ratio (PLR), neutrophil-platelet ratio (NPR) and systemic immune-inflammatory index (SII)] in the survivors and non-survivors of COVID-19. Methods We retrospectively reviewed the medical notes and serial hemograms of real-time reverse-transcription polymerase chain reaction (RT-PCR)-confirmed COVID-19 adults hospitalized from April 2020 to March 2021 from the time of diagnosis to the 3rd week of diagnosis. Results Of the 320 adults, 257 (80.3%) were survivors and had a lower mean age than the non-survivors (57.73 vs. 64.65 years, p < 0.001). At diagnosis, the non-survivors had lower hematocrit (p = 0.021), and lymphocyte (p = 0.002) and basophil (p = 0.049) counts and the hematocrit showed a p-value (Is this what you meant???) of 0.021); higher NLR (p < 0.001), PLR (p = 0.047), NPR (p = 0.022) and SII (p = 0.022). Using general linear models, the survivors and non-survivors showed significant variations with weekly lymphocyte count (p < 0.001), neutrophil count (p = 0.005), NLR (p = 0.009), MLR (p = 0.010) and PLR (p = 0.035). All HDRs remained higher in the non-survivors in the 2nd week and 3rd week of diagnosis and the HDRs were higher in the intubated patients than in the non-intubated patients. The NLR and SII were more efficient predictors of mortality in COVID-19 patients. Conclusions This study shows that serial lymphocyte and neutrophil counts, NLR, PLR, MLR, NPR and SII could serve as good and easily accessible markers of severity and predictors of outcomes in COVID-19 patients and should be used for the monitoring of treatment response.

7.
J Fungi (Basel) ; 10(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392794

ABSTRACT

BACKGROUND: Aspergillus fumigatus is an important concern for immunocompromised individuals, often resulting in severe infections. With the emergence of resistance to azoles, which has been the therapeutic choice for Aspergillus infections, monitoring the resistance of these microorganisms becomes important, including the search for mutations in the cyp51A gene, which is the gene responsible for the mechanism of action of azoles. We conducted a retrospective analysis covering 478 A. fumigatus isolates. METHODS: This comprehensive dataset comprised 415 clinical isolates and 63 isolates from hospital environmental sources. For clinical isolates, they were evaluated in two different periods, from 1998 to 2004 and 2014 to 2021; for environmental strains, one strain was isolated in 1998, and 62 isolates were evaluated in 2015. Our primary objectives were to assess the epidemiological antifungal susceptibility profile; trace the evolution of resistance to azoles, Amphotericin B (AMB), and echinocandins; and monitor cyp51A mutations in resistant strains. We utilized the broth microdilution assay for susceptibility testing, coupled with cyp51A gene sequencing and microsatellite genotyping to evaluate genetic variability among resistant strains. RESULTS: Our findings reveal a progressive increase in Minimum Inhibitory Concentrations (MICs) for azoles and AMB over time. Notably, a discernible trend in cyp51A gene mutations emerged in clinical isolates starting in 2014. Moreover, our study marks a significant discovery as we detected, for the first time, an A. fumigatus isolate carrying the recently identified TR46/F495I mutation within a sample obtained from a hospital environment. The observed cyp51A mutations underscore the ongoing necessity for surveillance, particularly as MICs for various antifungal classes continue to rise. CONCLUSIONS: By conducting resistance surveillance within our institution's culture collection, we successfully identified a novel TR46/F495I mutation in an isolate retrieved from the hospital environment which had been preserved since 1998. Moreover, clinical isolates were found to exhibit TR34/L98H/S297T/F495I mutations. In addition, we observed an increase in MIC patterns for Amphotericin B and azoles, signaling a change in the resistance pattern, emphasizing the urgent need for the development of new antifungal drugs. Our study highlights the importance of continued monitoring and research in understanding the evolving challenges in managing A. fumigatus infections.

8.
Article in English | LILACS-Express | LILACS | ID: biblio-1559118

ABSTRACT

ABSTRACT Hyalohyphomycosis and phaeohyphomycosis are groups of mycoses caused by several agents and show different clinical manifestations. We report a case of an immunocompromised patient who presented rare manifestations of opportunistic mycoses: mycetoma-like hyalohyphomycosis on his right foot caused by Colletotrichum gloeosporioides, followed by cutaneous phaeohyphomycosis on his right forearm caused by Exophiala oligosperma. Further to the rarity of this case, the patient's lesion on the foot shows that the clinical aspects of mycetomas could falsely appear in other fungal infections similar to hyalohyphomycosis. We also show that the muriform cells that were seen in the direct and anatomopathological examination of the skin are not pathognomonic of chromoblastomycosis, as observed in the lesion of the patient's forearm.

9.
Microbiol Spectr ; : e0037423, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37671877

ABSTRACT

Two novel variants of Klebsiella pneumoniae carbapenemase (KPC) associated with resistance to ceftazidime-avibactam (CZA) and designated as KPC-113 and KPC-114 by NCBI were identified in 2020, in clinical isolates of Klebsiella pneumoniae in Brazil. While K. pneumoniae of ST16 harbored the blaKPC-113 variant on an IncFII-IncFIB plasmid, K. pneumoniae of ST11 carried the blaKPC-114 variant on an IncN plasmid. Both isolates displayed resistance to broad-spectrum cephalosporins, ß-lactam inhibitors, and ertapenem and doripenem, whereas K. pneumoniae producing KPC-114 showed susceptibility to imipenem and meropenem. Whole-genome sequencing and in silico analysis revealed that KPC-113 presented a Gly insertion between Ambler positions 264 and 265 (R264_A265insG), whereas KPC-114 displayed two amino acid insertions (Ser-Ser) between Ambler positions 181 and 182 (S181_P182insSS) in KPC-2, responsible for CZA resistance profiles. Our results confirm the emergence of novel KPC variants associated with resistance to CZA in international clones of K. pneumoniae circulating in South America. IMPORTANCE KPC-2 carbapenemases are endemic in Latin America. In this regard, in 2018, ceftazidime-avibactam (CZA) was authorized for clinical use in Brazil due to its significant activity against KPC-2 producers. In recent years, reports of resistance to CZA have increased in this country, limiting its clinical application. In this study, we report the emergence of two novel KPC-2 variants, named KPC-113 and KPC-114, associated with CZA resistance in Klebsiella pneumoniae strains belonging to high-risk clones ST11 and ST16. Our finding suggests that novel mutations in KPC-2 are increasing in South America, which is a critical issue deserving active surveillance.

10.
J Mycol Med ; 33(4): 101435, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708696

ABSTRACT

BACKGROUND: Invasive Aspergillosis (IA) is a disease of significant clinical relevance, especially among immunosuppressed patients, and is associated with high mortality rates. In this study, we evaluated the epidemiological features and clinical outcomes in children and adults with IA. METHODS: This was an observational, multicentre, prospective surveillance study of inpatients with IA at two different hospitals in Campinas, Brazil, between 2018 and 2021. RESULTS: A total of 44 patients were identified (54.5% males), with a median age of 42 years (interquartile range (IQR):19.25-59 years, varying between 1 and 89 years). The following baseline conditions were identified: 61.4% were oncohaematological patients and 20.5% were solid organ transplant recipients. Among oncohaematological patients, 77.8% exhibited severe or persistent neutropenia. The median time between the onset of neutropenia and the diagnosis of fungal infection was 20 days (IQR: 10.5-26 days; range, 0-68 days). The interval between neutropenia onset and fungal infection was longer in paediatric than in general hospital (average, 29 vs. 13.4 days; median 26 vs 11 days; p=0.010). After the diagnosis of IA, the survival rates were 44.2% and 30.0% at 180 and 360 days, respectively. Survival was greater in patients aged ≤ 21 years (p = 0.040; log-rank test). They observed no difference in IA mortality related to COVID-19 pandemic. CONCLUSION: High mortality associated with IA was observed in both hospitals. Individuals over the age of 21 have a lower survival rate than younger patients.


Subject(s)
Aspergillosis , Invasive Fungal Infections , Mycoses , Neutropenia , Male , Humans , Child , Adult , Female , Brazil/epidemiology , Prospective Studies , Inpatients , Pandemics , Risk Factors , Aspergillosis/microbiology , Mycoses/epidemiology , Neutropenia/complications , Neutropenia/epidemiology , Invasive Fungal Infections/epidemiology
11.
Mem Inst Oswaldo Cruz ; 118: e220213, 2023.
Article in English | MEDLINE | ID: mdl-36921145

ABSTRACT

BACKGROUND: Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) allows rapid pathogen identification and potentially can be used for antifungal susceptibility testing (AFST). OBJECTIVES: We evaluated the performance of the MALDI-TOF MS in assessing azole susceptibility, with reduced incubation time, by comparing the results with the reference method Broth Microdilution. METHODS: Resistant and susceptible strains of Candida (n = 15) were evaluated against fluconazole and Aspergillus (n = 15) against itraconazole and voriconazole. Strains were exposed to serial dilutions of the antifungals for 15 h. Microorganisms' protein spectra against all drug concentrations were acquired and used to generate a composite correlation index (CCI) matrix. The comparison of autocorrelations and cross-correlations between spectra facilitated by CCI was used as a similarity parameter between them, enabling the inference of a minimum profile change concentration breakpoint. Results obtained with the different AFST methods were then compared. FINDINGS: The overall agreement between methods was 91.11%. Full agreement (100%) was reached for Aspergillus against voriconazole and Candida against fluconazole, and 73.33% of agreement was obtained for Aspergillus against itraconazole. MAIN CONCLUSIONS: This study demonstrates MALDI-TOF MS' potential as a reliable and faster alternative for AFST. More studies are necessary for method optimisation and standardisation for clinical routine application.


Subject(s)
Candida , Fluconazole , Voriconazole/pharmacology , Fluconazole/pharmacology , Azoles/pharmacology , Itraconazole/pharmacology , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Aspergillus , Lasers
12.
Mem. Inst. Oswaldo Cruz ; 118: e220213, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1422151

ABSTRACT

BACKGROUND Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) allows rapid pathogen identification and potentially can be used for antifungal susceptibility testing (AFST). OBJECTIVES We evaluated the performance of the MALDI-TOF MS in assessing azole susceptibility, with reduced incubation time, by comparing the results with the reference method Broth Microdilution. METHODS Resistant and susceptible strains of Candida (n = 15) were evaluated against fluconazole and Aspergillus (n = 15) against itraconazole and voriconazole. Strains were exposed to serial dilutions of the antifungals for 15 h. Microorganisms' protein spectra against all drug concentrations were acquired and used to generate a composite correlation index (CCI) matrix. The comparison of autocorrelations and cross-correlations between spectra facilitated by CCI was used as a similarity parameter between them, enabling the inference of a minimum profile change concentration breakpoint. Results obtained with the different AFST methods were then compared. FINDINGS The overall agreement between methods was 91.11%. Full agreement (100%) was reached for Aspergillus against voriconazole and Candida against fluconazole, and 73.33% of agreement was obtained for Aspergillus against itraconazole. MAIN CONCLUSIONS This study demonstrates MALDI-TOF MS' potential as a reliable and faster alternative for AFST. More studies are necessary for method optimisation and standardisation for clinical routine application.

13.
Article in English | MEDLINE | ID: mdl-36467110

ABSTRACT

Introduction: The hemogram and hemogram-derivative ratios (HDRs) are becoming markers of the severity and mortality of COVID-19. We evaluated the hemograms and serial weekly HDRs [neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocyte ratio (PLR), neutrophil-platelet ratio (NPR) and systemic immune-inflammatory index (SII)] in the survivors and non-survivors of COVID-19. Methods: We retrospectively reviewed the medical notes and serial hemograms of real-time reverse-transcription polymerase chain reaction (RT-PCR)-confirmed COVID-19 adults hospitalized from April 2020 to March 2021 from the time of diagnosis to the 3rd week of diagnosis. Results: Of the 320 adults, 257 (80.3%) were survivors and had a lower mean age than the non-survivors (57.73 vs. 64.65 years, p < 0.001). At diagnosis, the non-survivors had lower lymphocyte (p = 0.002) and basophil (p = 0.049) counts and the hematocrit showed a p-value (Is this what you meant???) of 0.021); higher NLR (p < 0.001), PLR (p = 0.047), NPR (p = 0.022) and SII (p = 0.022). Using general linear models, the survivors and non-survivors showed significant variations with weekly lymphocyte count (p < 0.001), neutrophil count (p = 0.005), NLR (p = 0.009), MLR (p = 0.010) and PLR (p = 0.035). All HDRs remained higher in the non-survivors in the 2nd week and 3rd week of diagnosis and the HDRs were higher in the intubated patients than in the non-intubated patients. The NLR and SII were more efficient predictors of mortality in COVID-19 patients. Conclusions: This study shows that serial lymphocyte and neutrophil counts, NLR, PLR, MLR, NPR and SII could serve as good and easily accessible markers of severity and predictors of outcomes in COVID-19 patients and should be used for the monitoring of treatment response.

14.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: mdl-35891345

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus, responsible for an atypical pneumonia that can progress to acute lung injury. MicroRNAs are small non-coding RNAs that control specific genes and pathways. This study evaluated the association between circulating miRNAs and lung injury associated with COVID-19. Methods: We evaluated lung injury by computed tomography at hospital admission and discharge and the serum expression of 754 miRNAs using the TaqMan OpenArray after hospital discharge in 27 patients with COVID-19. In addition, miR-150-3p was validated by qRT-PCR on serum samples collected at admission and after hospital discharge. Results: OpenArray analysis revealed that seven miRNAs were differentially expressed between groups of patients without radiological lung improvement compared to those with lung improvement at hospital discharge, with three miRNAs being upregulated (miR-548c-3p, miR-212-3p, and miR-548a-3p) and four downregulated (miR-191-5p, miR-151a-3p, miR-92a-3p, and miR-150-3p). Bioinformatics analysis revealed that five of these miRNAs had binding sites in the SARS-CoV-2 genome. Validation of miR-150-3p by qRT-PCR confirmed the OpenArray results. Conclusions: The present study shows the potential association between the serum expression of seven miRNAs and lung injury in patients with COVID-19. Furthermore, increased expression of miR-150 was associated with pulmonary improvement at hospital discharge.


Subject(s)
COVID-19 , Lung Injury , MicroRNAs , COVID-19/genetics , Computational Biology/methods , Humans , MicroRNAs/metabolism , SARS-CoV-2
15.
Med Mycol Case Rep ; 36: 5-9, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35242508

ABSTRACT

We present a case of a 55-year-old man with a heart transplant who acquired Invasive Aspergillosis by Aspergillus fumigatus with the focus in the kidney. During about two years of antifungal treatment, most of the time with voriconazole, it was possible to obtain nine isolates of A. fumigatus, with the same genotypic characteristics, but with an increase in MIC for several azoles. The two last isolates presented high MICs for Voriconazole (>8 µg/mL>). Sequencing of the CYP51A gene showed G448S amino acid substitution in the same two isolates. In long-term treatments with antifungals, it would be important to regularly evaluate the susceptibility of isolated strains, as resistance to azoles has been increasingly described around the world.

16.
Exp Biol Med (Maywood) ; 246(23): 2495-2501, 2021 12.
Article in English | MEDLINE | ID: mdl-34279137

ABSTRACT

In this cross-sectional study, we investigate the presence of Severe Acute Respiratory Syndrome Coronavirus 2 Ribonucleic Acid (SARS-CoV-2 RNA) in the tears of hospitalized COVID-19 patients. After laboratory confirmation of SARS-CoV-2 infection by reverse transcription polymerase chain reaction (RT-PCR) analysis, tear samples from both eyes of each patient were collected using conjunctival swab for RT-PCR. Detailed demographic profile, systemic and ocular symptoms, comorbidities, clinical, ancillary, and ocular manifestations were evaluated. Of the 83 patients enrolled in the study, 7 (8.43%) had SARS-CoV-2 RNA detected in the tear samples. Neutrophils' count, C-reactive protein, and D-dimer were higher in patients with SARS-CoV-2 detected in tears than in patients without virus in ocular surface samples. One patient with SARS-CoV-2 in tears showed mild ocular eyelid edema, hyperemia, and chemosis. No relevant ocular manifestations were detected in the other patients. Although the levels of viral RNA on ocular surface samples were low for most patients (5/7), with positivity only for gene N and CT higher than 30, two patients were positive for all viral targets tested (N, E, and RpRd), with viral load near 1 × 105 ePFU/mL, indicating that the ocular transmission of SARS-CoV-2 is a possibility that needs to be considered, especially in the hospital environment. Further studies need to be conducted to demonstrate whether infective viral particles could be isolated from tears.


Subject(s)
COVID-19/virology , Eye Infections, Viral/virology , Eye/virology , SARS-CoV-2/pathogenicity , Adult , Aged , Brazil , COVID-19/complications , COVID-19/pathology , COVID-19 Nucleic Acid Testing/statistics & numerical data , Eye Infections, Viral/epidemiology , Eye Infections, Viral/pathology , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics , Tears/virology , Viral Load
17.
J Mycol Med ; 31(4): 101175, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34303951

ABSTRACT

BACKGROUND: COVID-19 co-infections have been described with different pathogens, including filamentous and yeast fungi. METHODOLOGY: A retrospective case series study conducted from February to December 2020, at a Brazilian university hospital. Data were collected from two hospital surveillance systems: Invasive fungal infection (IFI) surveillance (Mycosis Resistance Program - MIRE) and COVID-19 surveillance. Data from both surveillance systems were cross-checked to identify individuals diagnosed with SARS-CoV-2 (by positive polymerase chain reaction (PCR)) and IFI during hospital stays within the study period. RESULTS: During the study period, 716 inpatients with COVID-19 and 55 cases of IFI were identified. Fungal co-infection with SARS-CoV-2 was observed in eight (1%) patients: three cases of aspergillosis; four candidemia and one cryptococcosis. The median age of patients was 66 years (IQR 58-71 years; range of 28-77 years) and 62.5% were men. Diagnosis of IFI occurred a median of 11.5 days (IQR 4.5-23 days) after admission and 11 days (IQR 6.5-16 days) after a positive PCR result for SARS-CoV-2. In 75% of cases, IFI was diagnosed in the intensive care unit (ICU). Cases of aspergillosis emerged earlier than those of candidemia: an average of 8.6 and 28.6 days after a positive PCR for SARS-CoV-2, respectively. All the patients with both infections ultimately died. CONCLUSION: A low rate of COVID-19 co-infection with IFI was observed, with high mortality. Most cases were diagnosed in ICU patients. Aspergillosis diagnosis is highly complex in this context and requires different criteria.


Subject(s)
Aspergillosis , COVID-19 , Candidemia , Coinfection , Cryptococcosis , Adult , Aged , Aspergillosis/epidemiology , Brazil/epidemiology , COVID-19/epidemiology , Candidemia/epidemiology , Coinfection/epidemiology , Cryptococcosis/epidemiology , Female , Fungi , Hospitals, University , Humans , Male , Middle Aged , Referral and Consultation , Retrospective Studies
18.
Emerg Infect Dis ; 27(6): 1737-1740, 2021.
Article in English | MEDLINE | ID: mdl-33871331

ABSTRACT

We documented 4 cases of severe acute respiratory syndrome coronavirus 2 reinfection by non-variant of concern strains among healthcare workers in Campinas, Brazil. We isolated infectious particles from nasopharyngeal secretions during both infection episodes. Improved and continued protection measures are necessary to mitigate the risk for reinfection among healthcare workers.


Subject(s)
COVID-19/diagnosis , Health Personnel , Reinfection/diagnosis , Reinfection/virology , SARS-CoV-2/isolation & purification , Virus Shedding , Adult , Brazil/epidemiology , COVID-19/epidemiology , Female , Humans , Middle Aged , Reinfection/therapy
19.
Braz J Microbiol ; 51(2): 673-683, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32170592

ABSTRACT

In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.


Subject(s)
Aspergillus/drug effects , Aspergillus/metabolism , Drug Discovery/methods , Lysine/metabolism , Acetylation , Aspergillosis/drug therapy , Humans , Pharmaceutical Preparations , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...