Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 81(9): 2985-94, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25710365

ABSTRACT

Salmonella enterica serovar Enteritidis is a major foodborne pathogen in the United States, causing gastroenteritis in humans, primarily through consumption of contaminated eggs. Chickens are the reservoir host of S. Enteritidis. In layer hens, S. Enteritidis colonizes the intestine and migrates to various organs, including the oviduct, leading to egg contamination. This study investigated the efficacy of in-feed supplementation with trans-cinnamaldehyde (TC), a generally recognized as safe (GRAS) plant compound obtained from cinnamon, in reducing S. Enteritidis cecal colonization and systemic spread in layers. Additionally, the effect of TC on S. Enteritidis virulence factors critical for macrophage survival and oviduct colonization was investigated in vitro. The consumer acceptability of eggs was also determined by a triangle test. Supplementation of TC in feed for 66 days at 1 or 1.5% (vol/wt) for 40- or 25-week-old layer chickens decreased the amounts of S. Enteritidis on eggshell and in yolk (P<0.001). Additionally, S. Enteritidis persistence in the cecum, liver, and oviduct in TC-supplemented birds was decreased compared to that in controls (P<0.001). No significant differences in feed intake, body weight, or egg production in birds or in consumer acceptability of eggs were observed (P>0.05). In vitro cell culture assays revealed that TC reduced S. Enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells and reduced S. Enteritidis survival in chicken macrophages (P<0.001). Follow-up gene expression analysis using real-time quantitative PCR (qPCR) showed that TC downregulated the expression of S. Enteritidis virulence genes critical for chicken oviduct colonization (P<0.001). The results suggest that TC may potentially be used as a feed additive to reduce egg-borne transmission of S. Enteritidis.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents/administration & dosage , Eggs/microbiology , Salmonella enteritidis/isolation & purification , Acrolein/administration & dosage , Animals , Bacterial Adhesion/drug effects , Cecum/microbiology , Chickens , Epithelial Cells/microbiology , Female , Gene Expression/drug effects , Gene Expression Profiling , Liver/microbiology , Macrophages/microbiology , Microbial Viability/drug effects , Oviducts/microbiology , Real-Time Polymerase Chain Reaction , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis/physiology , United States , Virulence Factors/genetics
2.
Int J Food Microbiol ; 144(3): 464-8, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21122935

ABSTRACT

The efficacy of carvacrol (CAR), trans-cinnamaldehyde (TC), eugenol (EUG) and ß-resorcylic acid (BR) as a wash treatment for reducing Salmonella spp. on tomatoes was investigated. Plum tomatoes inoculated with a six-serotype mixture of Salmonella (108CFU) were subjected to washing in sterile deionized water (control) or deionized water containing chlorine (100 ppm), CAR (0.25 and 0.75%), TC (0.5 and 0.75%), EUG (0.25 and 0.75%), or BR (0.75 and 1.0%) for 15 sec, 1 min, and 3 min. The plant molecules were more effective (P<0.05) in reducing Salmonella on tomatoes compared to washing in water and chlorine. Both concentrations of CAR and TC, and 0.75% EUG decreased Salmonella counts on tomatoes by~6.0 log CFU/ml at 1 min. Both concentrations of BR decreased the pathogen on tomatoes to undetectable levels at 3 min of exposure. Washing of tomatoes in deionized water and chlorine for 3 min reduced Salmonella by ca. 2.0 and 4.0 log CFU/ml, respectively. No Salmonella was detected in the wash water containing the plant molecules or chlorine, whereas a substantial population of the pathogen survived in the control wash water. Moreover, none of the dipping treatments had any effect on the red color of tomatoes (P>0.05). Results indicate that CAR, TC, EUG and BR could effectively be used to kill Salmonella on tomatoes, but additional studies on sensory and quality characteristics of tomatoes treated with plant molecules are warranted.


Subject(s)
Anti-Infective Agents/pharmacology , Food Handling/methods , Food Microbiology , Microbial Viability , Plant Extracts/pharmacology , Salmonella/drug effects , Solanum lycopersicum/microbiology , Colony Count, Microbial , Microbial Viability/drug effects , Salmonella/physiology , Time Factors , Water/chemistry
3.
J Food Prot ; 72(4): 722-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19435218

ABSTRACT

Salmonella Enteritidis is a major foodborne pathogen for which chickens serve as reservoir hosts. Reducing Salmonella Enteritidis carriage in chickens would reduce contamination of poultry meat and eggs with this pathogen. We investigated the prophylactic efficacy of feed supplemented with caprylic acid (CA), a natural, generally recognized as safe eight-carbon fatty acid, for reducing Salmonella Enteritidis colonization in chicks. One hundred commercial day-old chicks were randomly divided into five groups of 20 birds each: CA control (no Salmonella Enteritidis, CA), positive control (Salmonella Enteritidis, no CA), negative control (no Salmonella Enteritidis, no CA), and 0.7 or 1% CA. Water and feed were provided ad libitum. On day 8, birds were inoculated with 5.0 log CFU of Salmonella Enteritidis by crop gavage. Six birds from each group were euthanized on days 1, 7, and 10 after challenge, and Salmonella Enteritidis populations in the cecum, small intestine, cloaca, crop, liver, and spleen were enumerated. The study was replicated three times. CA supplementation at 0.7 and 1% consistently decreased Salmonella Enteritidis populations recovered from the treated birds. Salmonella Enteritidis counts in the tissue samples of CA-treated chicks were significantly lower (P < 0.05) than those of control birds on days 7 and 10 after challenge. Feed intake and body weight did not differ between the groups. Histological examination revealed no pathological changes in the cecum and liver of CA-supplemented birds. The results suggest that prophylactic CA supplementation through feed can reduce Salmonella Enteritidis colonization in day-old chicks and may be a useful treatment for reducing Salmonella Enteritidis carriage in chickens.


Subject(s)
Caprylates/pharmacology , Chickens , Diet/veterinary , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis/drug effects , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Carrier State , Cecum/microbiology , Dose-Response Relationship, Drug , Drug Administration Schedule , Gastrointestinal Contents/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
4.
Domest Anim Endocrinol ; 35(1): 74-80, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18448306

ABSTRACT

It has been suggested that nitric oxide (NO) acts in either an anti-luteolytic or in a luteolytic manner, but the mechanism for these opposing roles is unclear. We hypothesized that NO may act in a dose-dependent manner to regulate luteal function, whereby low concentrations of NO might stimulate luteal progesterone production (i.e. luteotrophic) and high concentrations of NO might reduce concentrations of plasma progesterone (i.e. luteolytic). To test this hypothesis we infused increasing concentrations of the fast-acting NO donor, dipropylenetriamine NONOate (DPTA), into the arterial supply of sheep with ovarian transplants bearing a corpus luteum (CL). Infusions were performed on sheep with CL 11 days of age (n=9) or over 30 days of age (n=15). We measured changes in the concentration of progesterone in ovarian venous plasma during the 1-h infusion and for 24h after the infusion, and then compared the mean concentration of progesterone between treatment groups for effects by dose and dose by period interactions. Compared with saline-treated controls (n=6), the highest dose of 1000 microg/min DPTA (n=6) reduced (P0.05) in sheep infused with the lowest dose of 1 microg/min DPTA (n=6) compared with controls. We conclude that NO regulates luteal function in a dose-dependent manner in sheep in vivo.


Subject(s)
Corpus Luteum/drug effects , Luteolysis/drug effects , Nitric Oxide/pharmacology , Sheep , Alkenes/administration & dosage , Alkenes/pharmacology , Animals , Corpus Luteum/growth & development , Dose-Response Relationship, Drug , Female , Luteal Phase/blood , Luteal Phase/drug effects , Nitric Oxide/physiology , Nitric Oxide Donors/administration & dosage , Nitric Oxide Donors/pharmacology , Ovary/transplantation , Progesterone/blood , Sheep/blood , Sheep/physiology , Time Factors
5.
Domest Anim Endocrinol ; 34(4): 411-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18258406

ABSTRACT

Three separate in vivo experiments were conducted to evaluate the putative role of endothelin-1 (ET-1) during luteal regression in heifers. In Experiment 1, a single intraluteal injection of 500 microg BQ-610 [(N,N-hexamethylene) carbamoyl-Leu-D-Trp (CHO)-D-Trp], a highly specific endothelin A (ETA) receptor antagonist, did not diminish the decline in plasma progesterone following a single exogenous injection of 25 mg prostaglandin F2 alpha (PGF2alpha) administered at midcycle of the estrous cycle. In Experiment 2, six intrauterine infusions of 500 microg BQ-610 given every 12 h on days 16-18 delayed spontaneous luteolysis, as evidenced by an extended elevation (P=0.054) of plasma progesterone concentration. In Experiment 3, heifers were administered six intrauterine infusions of BQ-610 or saline on days 16-19, and peripheral blood samples were collected from day 11 to 16 (before infusion), hourly on days 16-19 (during infusion), and on days 20-25 (after infusion). BQ-610 treated heifers had markedly higher (P<0.0001) levels of plasma progesterone compared with saline controls, and this effect was most notable during the infusion period (treatment by period interaction; Por=0.05) between treatments. These results indicate that the in vivo antagonism of the ETA receptor can delay functional luteolysis, and supports the theory that ET-1 regulates luteal function in ruminants.


Subject(s)
Cattle/physiology , Luteolysis/drug effects , Oligopeptides/administration & dosage , Uterus/drug effects , Administration, Intravaginal , Animals , Dinoprost/analogs & derivatives , Dinoprost/blood , Dose-Response Relationship, Drug , Endothelin A Receptor Antagonists , Estrous Cycle/drug effects , Female , Luteolysis/blood , Progesterone/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...