Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(43): 5610-5613, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713068

ABSTRACT

We report the transfer of H-atoms from a reduced polyoxovanadate alkoxide [nOct4N][V6O6(OH2)(OMe)12] via concerted proton-electron transfer. Oxygen reduction is compared between bridging and terminal O-H bonds revealing similar mechanisms, providing new insight to design criteria for metal-oxide electrocatalysts that faciliate oxygen reduction by concerted-proton electron transfer.

2.
J Am Chem Soc ; 146(4): 2364-2369, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241170

ABSTRACT

The transfer of two H-atom equivalents to the titanium-doped polyoxovanadate-alkoxide, [TiV5O6(OCH3)13], results in the formation of a V(III)-OH2 site at the surface of the assembly. Incorporation of the group (IV) metal ion results in a weakening of the O-H bonds of [TiV5O5(OH2)(OCH3)13] in comparison to its homometallic congener, [V6O6(OH2)(OCH3)12], resembling more closely the thermodynamics reported for the one-electron reduced derivative, [V6O6(OH2)(OCH3)12]1-. An analysis of early time points of the reaction of [TiV5O6(OCH3)13] and 5,10-dihydrophenazine reveals the formation of an oxidized substrate, suggesting that proton-coupled electron transfer proceeds via initial electron transfer from substrate to cluster prior to proton transfer. These results demonstrate the profound influence of heterometal dopants on the mechanism of PCET with respect to the surface of the assembly.

3.
Dalton Trans ; 52(43): 15775-15785, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37850536

ABSTRACT

The uptake of hydrogen atoms (H-atoms) at reducible metal oxide nanocrystal surfaces has implications in catalysis and energy storage. However, it is often difficult to gain insight into the physicochemical factors that dictate the thermodynamics and kinetics of H-atom transfer to the surface of these assemblies. Recently, our research group has demonstrated the formation of oxygen-atom (O-atom) defects in polyoxovanadate-alkoxide (POV-alkoxide) clusters via conversion of surface oxido moieties to aquo ligands, which can be accomplished via addition of two H-atom equivalents. Here, we present the dependence of O-atom defect formation via H-atom transfer at the surface of vanadium oxide clusters on the length of surface alkoxide ligands. Analysis of H-atom transfer reactions to low-valent POV-alkoxide clusters [V6O7(OR)12]1- (R = Me, Et, nPr, nBu) reveals that the length of primary alkoxide surface ligands does not significantly influence the thermodynamics of these processes. However, surface ligand length has a significant impact on the kinetics of these PCET reactions. Indeed, the methoxide-bridged cluster, [V6O7(OMe)12]1- reacts ∼20 times faster than the other derivatives evaluated. Interestingly, as the aliphatic linkages are increased in size from -C2H5 to -C4H9, reaction rates remain consistent, suggesting restricted access to available ligand conformers as a result of the incompatibility of the aliphatic ligands and acetonitrile may buffer further changes to the rate of reaction.

4.
Inorg Chem ; 62(38): 15616-15626, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37712579

ABSTRACT

We present the post-synthetic modification of a polyoxovanadate-alkoxide (POV-alkoxide) cluster via the reactivity of its cationic form, [V6O7(OCH3)12]1+, with water. This result indicates that cluster oxidation increases the lability of bridging methoxide ligands, affording a ligand exchange reaction that serves to compensate for the increased charge of the cluster core. This synthetic advance affords the isolation of a series of POV-alkoxide clusters with varying degrees of µ2-O2- ligands incorporated at the surface, namely, [V6O8(OCH3)11], [V6O9(OCH3)10], and [V6O10(OCH3)9]. Characterization of the POV-alkoxide clusters is described; changes in the infrared and electronic absorption spectra are consistent with the oxidation of the cluster core. We also examine the consequences of ligand substitution on the redox properties of the series of POV-alkoxide clusters via cyclic voltammetry; decreased alkoxide ligand density translates to a cathodic shift of analogous redox events. Ligand substitution also increases comproportionation constants of the Lindqvist core, indicating electron exchange between vanadium centers is promoted in structures with greater numbers of µ2-O2- ligands.

5.
Acc Chem Res ; 56(12): 1602-1612, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37279252

ABSTRACT

ConspectusProton-coupled electron transfer (PCET) is a fundamental process involved in all areas of chemistry, with relevance to biological transformations, catalysis, and emergent energy storage and conversion technologies. Early observations of PCET were reported by Meyer and co-workers in 1981 while investigating the proton dependence of reduction of a molecular ruthenium oxo complex. Since that time, this conceptual framework has grown to encompass an enormous scope of charge transfer and compensation reactions. In this Account, we will discuss ongoing efforts in the Matson Laboratory to understand the fundamental thermodynamics and kinetics of PCET processes at the surface of a series of Lindqvist-type polyoxovanadate clusters. This project aims to provide atomistic resolution of net H atom uptake and transfer at the surfaces of transition-metal oxide materials.First, we discuss our efforts aimed at understanding PCET at metal oxide surfaces using the Lindqvist-type polyoxovanadate-alkoxide (POV-alkoxide) cluster [nBu4N]2[V6O13(TRIOLNO2)2]. These clusters reversibly bind H atom equivalents at bridging oxide sites, mirroring the proposed uptake and release of e-/H+ pairs at transition-metal oxide surfaces. Summarized results include the measurement of bond dissociation free energies of surface hydroxide moieties (BDFE(O-H)) as well as mechanistic analyses that verify concerted proton electron transfer as the operative pathway for PCET at the surface of POV-alkoxide clusters.Next, we discuss net proton and H atom uptake at the surface of reduced variants of the Lindqvist-type POV-alkoxide cluster, [V6O7(OR)12]n (R = Me, Et; n = -2, -1, 0, + 1). In the case of these low-valent POV-alkoxide clusters, nucleophilic bridging sites are kinetically inhibited by functionalization of the cluster surface with organic ligands. This molecular modification enables site-selectivity in proton and H atom uptake to terminal oxide sites. The impact of reaction site and cluster electronics on reaction driving force of PCET is explored, with core electron density playing a critical role in dictating thermodynamics of H atom uptake and transfer. Additional work described here contrasts the kinetics of PCET at terminal oxide sites to the reactivity observed at bridging oxides in POV-alkoxide clusters.Overall, this Account summarizes our foundational knowledge regarding the assessment of PCET reactivity at the surfaces of molecular metal oxides. Drawing analogies between POV-alkoxide clusters and nanoscopic metal oxide materials provide design principles for the advancement of materials applications with atomic precision. These complexes are additionally highlighted as tunable redox mediators in their own right; our studies demonstrate how cluster surface reactivities can be optimized by modifying electronic structure and surface functionalities.

6.
7.
Chem Sci ; 14(6): 1386-1396, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36794190

ABSTRACT

Proton-coupled electron transfer (PCET) is an important process in the activation and reactivity of metal oxide surfaces. In this work, we study the electronic structure of a reduced polyoxovanadate-alkoxide cluster bearing a single bridging oxide moiety. The structural and electronic implications of the incorporation of bridging oxide sites are revealed, most notably resulting in the quenching of cluster-wide electron delocalization in the most reduced state of the molecule. We correlate this attribute to a change in regioselectivity of PCET to the cluster surface (e.g. reactivity at terminal vs. bridging oxide groups). Reactivity localized at the bridging oxide site enables reversible storage of a single H-atom equivalent, changing the stoichiometry of PCET from a 2e-/2H+ process. Kinetic investigations indicate that the change in site of reactivity translates to an accelerated rate of e-/H+ transfer to the cluster surface. Our work summarizes the role which electronic occupancy and ligand density play in the uptake of e-/H+ pairs at metal oxide surfaces, providing design criteria for functional materials for energy storage and conversion processes.

8.
Chemistry ; 29(20): e202203440, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36624046

ABSTRACT

Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters are excellent candidates for applications in energy storage and conversion due to their rich electrochemical profiles. One approach to tune the redox properties of these cluster complexes is through substitutional cationic doping within the hexavanadate core. Here, we report the synthesis of a series of tungsten-substituted POV-alkoxide clusters with one and two tungsten atoms. Soft landing of mass-selected ions was used to purify heterometal POV-alkoxides that cannot be readily separated using conventional approaches. The soft landed POV-alkoxides are characterized using infrared reflection-absorption spectroscopy and electrospray ionization mass spectrometry. The redox properties of the isolated ions are examined using an in situ electrochemical cell which enables traditional in vacuo electrochemical measurements inside of an ion soft landing instrument. Although the overall cluster core retains redox activity after tungsten doping, vanadium-based redox couples (VV /VIV ) are shifted substantially, indicating a pronounced effect of a heteroatom on the electronic structure of the core.

9.
J Am Chem Soc ; 144(11): 5029-5041, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35275632

ABSTRACT

The uptake of hydrogen atoms (H-atoms) into reducible metal oxides has implications in catalysis and energy storage. However, outside of computational modeling, it is difficult to obtain insight into the physicochemical factors that govern H-atom uptake at the atomic level. Here, we describe oxygen-atom vacancy formation in a series of hexavanadate assemblies via proton-coupled electron transfer, presenting a novel pathway for the formation of defect sites at the surface of redox-active metal oxides. Kinetic investigations reveal that H-atom transfer to the metal oxide surface occurs through concerted proton-electron transfer, resulting in the formation of a transient VIII-OH2 moiety that, upon displacement of the water ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide cluster. Oxidation state distribution of the cluster core dictates the affinity of surface oxido ligands for H-atoms, mirroring the behavior of reducible metal oxide nanocrystals. Ultimately, atomistic insights from this work provide new design criteria for predictive proton-coupled electron-transfer reactivity of terminal M═O moieties at the surface of nanoscopic metal oxides.


Subject(s)
Oxygen , Protons , Electron Transport , Electrons , Hydrogen/chemistry , Ligands , Oxides/chemistry , Oxygen/chemistry
10.
Inorg Chem ; 61(12): 4789-4800, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35293218

ABSTRACT

Here, we present an investigation of the thermochemistry of proton uptake in acetonitrile across three charge states of a polyoxovanadate-alkoxide (POV-alkoxide) cluster, [V6O7(OMe)12]n (n = 2-, 1-, and 0). The vanadium oxide assembly studied features bridging sites saturated by methoxide ligands, isolating protonation to terminal vanadyl moieties. Exposure of [V6O7(OMe)12]n to organic acids of appropriate strength results in the protonation of a terminal V═O bond, generating the transient hydroxide-substituted POV-alkoxide cluster [V6O6(OH)(OMe)12]n+1. Evidence for this intermediate proved elusive in our initial report, but here we present the isolation of a divalent anionic cluster that features hydrogen bonding to dimethylammonium at the terminal oxo site. Degradation of the protonated species results in the formation of equimolar quantities of one-electron-oxidized and oxygen-atom-efficient complexes, [V6O7(OMe)12]n+1 and [V6O6(OMe)12]n+1. While analogous reactivity was observed across the three charge states of the cluster, a dependence on the acid strength was observed, suggesting that the oxidation state of the vanadium oxide assembly influences the basicity of the cluster surface. Spectroscopic investigations reveal sigmoidal relationships between the acid strength and cluster conversion across the redox series, allowing for determination of the proton affinity of the surface of the cluster in all three charge states. The fully reduced cluster is found to be the most basic, with higher oxidation states of the assembly possessing substantially reduced proton affinities (∼7 pKa units per electron). These results further our understanding of the site-specific reactivity of terminal M═O bonds with protons in an organic solvent, revealing design criteria for engineering functional surfaces of metal oxide materials of relevance to energy storage and conversion.


Subject(s)
Protons , Vanadium , Ligands , Oxidation-Reduction , Oxides/chemistry , Vanadium/chemistry
11.
Article in English | MEDLINE | ID: mdl-35175719

ABSTRACT

The ongoing development of redox-active charge carriers for nonaqueous redox-flow batteries has led to energy-dense storage concepts and chemistries with high cell voltages. However, rarely are these candidates for flowable energy storage evaluated in tandem with cell separators compatible with organic solvent, limiting progress in the identification of suitable charge carrier-separator pairings. This is important, as the efficiency of a redox-flow battery is dictated by extent of active species crossover through a separator, dividing the two cells, and the contribution of the separator to cell resistance. Here, we report the size-dependent crossover behavior of a series of redox-active vanadium(III) acetoacetonate, and two polyoxovanadate-alkoxide clusters, [V6O7(OR)12] (R = CH3, C5H11) through separators derived from polymers of intrinsic microporosity (PIMs). We find that highly efficacious active-material blocking requires both increasing the size of the vanadium species and restricting pore swelling of the PIMs in nonaqueous electrolyte. Notably, increasing the size of the vanadium species does not significantly affect its redox reversibility, and reducing swelling decreases the conductivity of the separator by only 50%. By pairing polyoxometalate clusters with PIM membranes in nonaqueous redox-flow batteries, more efficient systems may well be within reach.

12.
J Appl Clin Med Phys ; 23(5): e13563, 2022 May.
Article in English | MEDLINE | ID: mdl-35194924

ABSTRACT

PURPOSE: To determine the possibility of further improving clinical stereotactic body radiotherapy (SBRT) plans using normal tissue complication probability (NTCP) objectives in order to minimize the risk for carotid blowout syndrome (CBOS). METHODS: 10 patients with inoperable locally recurrent head and neck cancer, who underwent SBRT using CyberKnife were analyzed. For each patient, three treatment plans were examined: (1) cone-based without delineation of the ipsilateral internal carotid (clinical plan used to treat the patients); (2) cone-based with the carotid retrospectively delineated and spared; and (3) Iris-based with carotid sparing. The dose-volume histograms of the target and primary organs at risk were calculated. The three sets of plans were compared based on dosimetric and TCP/NTCP (tumor control and normal tissue complication probabilities) metrics. For the NTCP values of carotid, the relative seriality model was used with the following parameters: D50 = 40 Gy, γ = 0.75, and s = 1.0. RESULTS: Across the 10 patient plans, the average TCP did not significantly change when the plans were re-optimized to spare the carotid. The estimated risk of CBOS was significantly decreased in the re-optimized plans, by 14.9% ± 7.4% for the cone-based plans and 17.7% ± 7.1% for the iris-based plans (p = 0.002 for both). The iris-based plans had significant (p = 0.02) reduced CBOS risk and delivery time (20.1% ± 7.4% time reduction, p = 0.002) compared to the cone-based plans. CONCLUSION: A significant improvement in the quality of the clinical plans could be achieved through the delineation of the internal carotids and the use of more modern treatment delivery modalities. In this way, for the same target coverage, a significant reduction in the risk of CBOS could be achieved. The range of risk reduction varied depending on the proximity of carotid artery to the target.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Carotid Arteries/pathology , Carotid Arteries/surgery , Humans , Neoplasm Recurrence, Local , Probability , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
13.
Chem Sci ; 12(38): 12744-12753, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703561

ABSTRACT

We report the synthesis and characterisation of a series of siloxide-functionalised polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V6O6(OSiMe3)(OMe)12] n (n = 1-, 2-), that serve as molecular models for proton and hydrogen-atom uptake in vanadium dioxide, respectively. Installation of a siloxide moiety on the surface of the Lindqvist core was accomplished via addition of trimethylsilyl trifluoromethylsulfonate to the fully-oxygenated cluster [V6O7(OMe)12]2-. Characterisation of [V6O6(OSiMe3)(OMe)12]1- by X-ray photoelectron spectroscopy reveals that the incorporation of the siloxide group does not result in charge separation within the hexavanadate assembly, an observation that contrasts directly with the behavior of clusters bearing substitutional dopants. The reduced assembly, [V6O6(OSiMe3)(OMe)12]2-, provides an isoelectronic model for H-doped VO2, with a vanadium(iii) ion embedded within the cluster core. Notably, structural analysis of [V6O6(OSiMe3)(OMe)12]2- reveals bond perturbations at the siloxide-functionalised vanadium centre that resemble those invoked upon H-atom uptake in VO2 through ab initio calculations. Our results offer atomically precise insight into the local structural and electronic consequences of the installation of hydrogen-atom-like dopants in VO2, and challenge current perspectives of the operative mechanism of electron-proton co-doping in these materials.

14.
Nanoscale Adv ; 3(5): 1293-1318, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-36132875

ABSTRACT

Polyoxovanadate (POV) clusters are an important subclass of polyoxometalates with a broad range of molecular compositions and physicochemical properties. One relatively underdeveloped application of these polynuclear assemblies involves their use as atomically precise, homogenous molecular models for bulk metal oxides. Given the structural and electronic similarities of POVs and extended vanadium oxide materials, as well as the relative ease of modifying the homogenous congeners, investigation of the chemical and physical properties of pristine and modified cluster complexes presents a method toward understanding the influence of structural modifications (e.g. crystal structure/phase, chemical makeup of surface ligands, elemental dopants) on the properties of extended solids. This review summarises recent advances in the use of POV clusters as atomically precise models for bulk metal oxides, with particular focus on the assembly of vanadium oxide clusters and the consequences of altering the molecular composition of the assembly via organofunctionalization and the incorporation of elemental "dopants".

15.
Front Oncol ; 10: 1077, 2020.
Article in English | MEDLINE | ID: mdl-32733802

ABSTRACT

Purpose/Objectives: Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) may be considered "high risk" due to the high doses per fraction. We analyzed CyberKnife™ (CK) SRS and SBRT-related incidents that were prospectively reported to our in-house incident learning system (ILS) in order to identify severity, contributing factors, and common error pathways. Material and Methods: From 2012 to 2019, 221 reported incidents related to the 4,569 CK fractions delivered (5.8%) were prospectively analyzed by our multi-professional Quality and Safety Committee with regard to severity, contributing factors, as well as the location where the incident occurred (tripped), where it was discovered (caught), and the safety barriers that were traversed (crossed) on the CK process map. Based on the particular step in the process map that incidents tripped, we categorized incidents into general error pathways. Results: There were 205 severity grade 1-2 (did not reach patient or no clinical impact), 11 grade 3 (clinical impact unlikely), 5 grade 4 (altered the intended treatment), and 0 grade 5-6 (life-threatening or death) incidents, with human performance being the most common contributing factor (79% of incidents). Incidents most commonly tripped near the time when the practitioner requested CK simulation (e.g., pre-CK simulation fiducial marker placement) and most commonly caught during the physics pre-treatment checklist. The four general error pathways included pre-authorization, billing, and scheduling issues (n= 119); plan quality (n= 30); administration of IV contrast during simulation or pre-medications during treatment (n= 22); and image guidance (n= 12). Conclusion: Most CK incidents led to little or no patient harm and most were related to billing and scheduling issues. Suboptimal human performance appeared to be the most common contributing factor to CK incidents. Additional study is warranted to develop and share best practices to reduce incidents to further improve patient safety.

16.
J Am Chem Soc ; 142(22): 9915-9919, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32433883

ABSTRACT

Here, we present the first example of acid-induced, oxygen-atom abstraction from the surface of a polyoxometalate cluster. Generation of the oxygen-deficient vanadium oxide, [V6O6(OC2H5)12]1-, was confirmed via independent synthesis. Spectroscopic analysis using infrared and electronic absorption spectroscopies affords resolution of the electronic structure of the oxygen-deficient cluster (oxidation state distribution = [VIIIVIV5]). This work has direct implications toward the elucidation of possible mechanisms of acid-assisted vacancy formation in bulk transition metal oxides, in particular electron-proton codoping that has recently been described for vanadium oxide (VO2). Ultimately, these molecular models deepen our understanding of proton-dependent redox chemistry of transition metal oxide surfaces.

17.
Chemistry ; 25(63): 14421-14429, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31497908

ABSTRACT

Multimetallic complexes have recently seen increased attention as next-generation charge carriers for nonaqueous redox flow batteries. Herein, we report the electrochemical performance of a molecular iron-molybdenum oxido complex, {[(Me3 TACN)Fe][µ-(MoO4 κ3 O,O',O")]}4 (Fe4 Mo4 O16 ). In symmetric battery charging schematics, Fe4 Mo4 O16 facilitates reversible two-electron storage with coulombic efficiencies >99 % over 100 cycles (5 days) with no molecular decomposition and minimal capacity fade. Energy efficiency throughout cycling remained high (∼82 %), as a result of the rapid electron-transfer kinetics observed for each of the complex's four redox events. We also report the synthesis of the analogous synthetic frameworks featuring tungstate vertices or bridging-sulfide moieties, revealing key observations relevant to structure-function relationships and design criteria for these types of heterometallic ensembles.

19.
Int J Radiat Oncol Biol Phys ; 95(4): 1298-303, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27354135

ABSTRACT

PURPOSE: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. METHODS AND MATERIALS: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. RESULTS: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. CONCLUSIONS: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint.


Subject(s)
Curriculum , Internship and Residency , Physics/education , Radiation Oncology/education , Humans , Societies, Medical
20.
Med Phys ; 41(6): 061710, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24877805

ABSTRACT

PURPOSE: Microbeam radiation therapy (MRT) is defined as the use of parallel, microplanar x-ray beams with an energy spectrum between 50 and 300 keV for cancer treatment and brain radiosurgery. Up until now, the possibilities of MRT have mainly been studied using synchrotron sources due to their high flux (100s Gy/s) and approximately parallel x-ray paths. The authors have proposed a compact x-ray based MRT system capable of delivering MRT dose distributions at a high dose rate. This system would employ carbon nanotube (CNT) field emission technology to create an x-ray source array that surrounds the target of irradiation. Using such a geometry, multiple collimators would shape the irradiation from this array into multiple microbeams that would then overlap or interlace in the target region. This pilot study demonstrates the feasibility of attaining a high dose rate and parallel microbeam beams using such a system. METHODS: The microbeam dose distribution was generated by our CNT micro-CT scanner (100 µm focal spot) and a custom-made microbeam collimator. An alignment assembly was fabricated and attached to the scanner in order to collimate and superimpose beams coming from different gantry positions. The MRT dose distribution was measured using two orthogonal radiochromic films embedded inside a cylindrical phantom. This target was irradiated with microbeams incident from 44 different gantry angles to simulate an array of x-ray sources as in the proposed compact CNT-based MRT system. Finally, phantom translation in a direction perpendicular to the microplanar beams was used to simulate the use of multiple parallel microbeams. RESULTS: Microbeams delivered from 44 gantry angles were superimposed to form a single microbeam dose distribution in the phantom with a FWHM of 300 µm (calculated value was 290 µm). Also, during the multiple beam simulation, a peak to valley dose ratio of ~10 was found when the phantom translation distance was roughly 4x the beam width. The first prototype CNT-based x-ray tube dedicated to the development of compact MRT technology development was proposed and planned based on the preliminary experimental results presented here and the previous corresponding Monte Carlo simulations. CONCLUSIONS: The authors have demonstrated the feasibility of creating microbeam dose distributions at a high dose rate using a proposed compact MRT system. The flexibility of CNT field emission x-ray sources could possibly bring compact and low cost MRT devices to the larger research community and assist in the translational research of this promising new approach to radiation therapy.


Subject(s)
Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Image-Guided/methods , Radiotherapy/instrumentation , Radiotherapy/methods , X-Ray Microtomography/instrumentation , X-Ray Microtomography/methods , Film Dosimetry , Nanotubes, Carbon , Phantoms, Imaging , Pilot Projects , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...