Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 6(10): 1499-502, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21904117

ABSTRACT

The root system is particularly affected by unfavourable conditions because it is in direct contact with the soil environment. Casparian strips, a specialised structure deposited in anticlinal walls, are characterised by the impregnation of the primary wall pores with lignin and suberin. The Casparian strips in the endo- and exodermis of vascular plant roots appear to play an important role in preventing the non-selective apoplastic bypass of salts into the stele along the apoplast under salt stress. However, only a few investigations have examined the deposition and function of these apoplastic barriers in response to salt stress in higher plants.


Subject(s)
Plant Physiological Phenomena , Plant Roots/anatomy & histology , Plant Roots/growth & development , Salt Tolerance/physiology , Plant Roots/cytology , Plant Roots/ultrastructure
2.
J Agric Food Chem ; 52(23): 7108-17, 2004 Nov 17.
Article in English | MEDLINE | ID: mdl-15537325

ABSTRACT

The external layers of wheat grain were investigated during maturation with respect to chemical and structural features and xylanase degradability. Cytochemical changes were observed in the isolated peripheral tissues of the wheat grain at four defined stages following anthesis. Marked chemical changes were highlighted at 11 days after anthesis, for which protein and lipid contents varied weakly. The profile of esterified ferulic acid showed large variation in the maturing peripheral layers of grain in contrast to the deposition of ferulate dimers, p-coumaric and sinapic acids. Lignin was monitored at the latest stages of ripening, which corresponds to the cessation of reserve accumulation in the grain. Arabinoxylans (AX) reached a maximum at 20 days and did not display any significant change in arabinosyl substitution proportion until ripeness. When submitted to xylanase, all outer layers were similarly altered in the proportion of soluble AX except for the peripheral tissues of the 11-day-aged wheat grain that had very little AX. Aleurone and nucellar layers were mostly degraded, whereas pericarp stayed intact at all stages of maturation. This degradation pattern was connected with the preferential immunolocalization of xylanase in aleurone and nucellar layers irrespective of the developmental stages. Further chemical examination of the enzyme-digested peripheral tissues of the grain supports the facts that ferulic ester is not a limiting factor in enzyme efficiency. Arabinose branching, ferulic dimers, and ether-linked monomers that are deposited early in the external layers would have more relevance to the in situ degradability of AX.


Subject(s)
Endo-1,4-beta Xylanases/metabolism , Seeds/chemistry , Seeds/growth & development , Triticum/chemistry , Triticum/growth & development , Carbohydrates/analysis , Lipids/analysis , Phenols/analysis , Plant Proteins/analysis , Xylans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...