Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 22: 101776, 2019.
Article in English | MEDLINE | ID: mdl-30927605

ABSTRACT

BACKGROUND: Effects of beta-amyloid accumulation on neuronal function precede the clinical manifestation of Alzheimer's disease (AD) by years and affect distinct cognitive brain networks. As previous studies suggest a link between beta-amyloid and dysregulation of excitatory and inhibitory neurotransmitters, we aimed to investigate the impact of GABA and glutamate on beta-amyloid related functional connectivity. METHODS: 29 cognitively unimpaired old-aged adults (age = 70.03 ±â€¯5.77 years) were administered 11C-Pittsburgh Compound B (PiB) positron-emission tomography (PET), and MRI at 7 Tesla (7T) including blood oxygen level dependent (BOLD) functional MRI (fMRI) at rest for measuring static and dynamic functional connectivity. An advanced 7T MR spectroscopic imaging (MRSI) sequence based on the free induction decay acquisition localized by outer volume suppression' (FIDLOVS) technology was used for gray matter specific measures of GABA and glutamate in the posterior cingulate and precuneus (PCP) region. RESULTS: GABA and glutamate MR-spectra indicated significantly higher levels in gray matter than in white matter. A global effect of beta-amyloid on functional connectivity in the frontal, occipital and inferior temporal lobes was observable. Interactive effects of beta-amyloid with gray matter GABA displayed positive PCP connectivity to the frontomedial regions, and the interaction of beta-amyloid with gray matter glutamate indicated positive PCP connectivity to frontal and cerebellar regions. Furthermore, decreased whole-brain but increased fronto-occipital and temporo-parietal dynamic connectivity was found, when GABA interacted with regional beta-amyloid deposits in the amygdala, frontal lobe, hippocampus, insula and striatum. CONCLUSIONS: GABA, and less so glutamate, may moderate beta-amyloid related functional connectivity. Additional research is needed to better characterize their interaction and potential impact on AD.


Subject(s)
Aging/physiology , Amyloid beta-Peptides/metabolism , Cerebellum/physiology , Cerebral Cortex/physiology , Glutamic Acid/metabolism , Gray Matter/physiology , Neuroimaging/methods , gamma-Aminobutyric Acid/metabolism , Aged , Aging/metabolism , Aniline Compounds , Cerebellum/diagnostic imaging , Cerebellum/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Connectome/methods , Female , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Positron-Emission Tomography/methods , Thiazoles
2.
Sci Rep ; 6: 35514, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748454

ABSTRACT

Quantitative Susceptibility Mapping (QSM) MRI at 7 Tesla and 11-Carbon Pittsburgh-Compound-B PET were used for investigating the relationship between brain iron and Amyloid beta (Aß) plaque-load in a context of increased risk for Alzheimer's disease (AD), as reflected by the Apolipoprotein E ε4 (APOE-e4) allele and mild cognitive impairment (MCI) in elderly subjects. Carriers of APOE-e4 with normal cognition had higher cortical Aß-plaque-load than non-carriers. In MCI an association between APOE-e4 and higher Aß-plaque-load was observable both for cortical and subcortical brain-regions. APOE-e4 and MCI was also associated with higher cortical iron. Moreover, cerebral iron significantly affected functional coupling, and was furthermore associated with increased Aß-plaque-load (R2-adjusted = 0.80, p < 0.001) and APOE-e4 carrier status (p < 0.001) in MCI. This study confirms earlier reports on an association between increased brain iron-burden and risk for neurocognitive dysfunction due to AD, and indicates that disease-progression is conferred by spatial colocalization of brain iron deposits with Aß-plaques.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Iron/metabolism , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Brain/pathology , Case-Control Studies , Cognitive Dysfunction/diagnostic imaging , Demography , Female , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Positron-Emission Tomography , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...