Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Transfus Med Hemother ; 51(3): 158-163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867806

ABSTRACT

Introduction: The transplantation of highly sensitized patients remains a major obstacle. Immunized patients wait longer for a transplant if not prioritized, and if transplanted, their transplant outcome is worse. Case Presentation: We report a successful AB0- and HLA-incompatible living donor kidney transplantation in a 35-year-old female patient with systemic lupus erythematosus (SLE) and antiphospholipid syndrome. The patient had a positive T- and B-cell complement-dependent cytotoxicity (CDC) crossmatch and previous graft loss due to renal vein thrombosis. We treated the patient with intravenous immunoglobulins, rituximab, horse anti-thymocyte globulin, daratumumab, and imlifidase, besides standard immunosuppression. All IgG antibodies were sensitive to imlifidase treatment. Besides donor-specific HLA antibodies, anti-dsDNA antibodies and antiphospholipid antibodies were cleaved. The patient initially had delayed graft function. Two kidney biopsies (day 7 and day 14) revealed acute tubular necrosis without signs of HLA antibody-mediated rejection. On posttransplant day 30, hemodialysis was stopped, and creatinine levels declined over the next weeks to a baseline creatinine of about 1.7 mg/dL after 12 months. Conclusion: In this case, a novel multimodal treatment strategy including daratumumab and imlifidase enabled successful kidney transplantation for a highly immunized patient with antiphospholipid antibodies.

2.
N Engl J Med ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38804514

ABSTRACT

BACKGROUND: Antibody-mediated rejection is a leading cause of kidney-transplant failure. The targeting of CD38 to inhibit graft injury caused by alloantibodies and natural killer (NK) cells may be a therapeutic option. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with antibody-mediated rejection that had occurred at least 180 days after transplantation to receive nine infusions of the CD38 monoclonal antibody felzartamab (at a dose of 16 mg per kilogram of body weight) or placebo for 6 months, followed by a 6-month observation period. The primary outcome was the safety and side-effect profile of felzartamab. Key secondary outcomes were renal-biopsy results at 24 and 52 weeks, donor-specific antibody levels, peripheral NK-cell counts, and donor-derived cell-free DNA levels. RESULTS: A total of 22 patients underwent randomization (11 to receive felzartamab and 11 to receive placebo). The median time from transplantation until trial inclusion was 9 years. Mild or moderate infusion reactions occurred in 8 patients in the felzartamab group. Serious adverse events occurred in 1 patient in the felzartamab group and in 4 patients in the placebo group; graft loss occurred in 1 patient in the placebo group. After week 24, resolution of morphologic antibody-mediated rejection was more frequent with felzartamab (in 9 of 11 patients [82%]) than with placebo (in 2 of 10 patients [20%]), for a difference of 62 percentage points (95% confidence interval [CI], 19 to 100) and a risk ratio of 0.23 (95% confidence interval [CI], 0.06 to 0.83). The median microvascular inflammation score was lower in the felzartamab group than in the placebo group (0 vs. 2.5), for a mean difference of -1.95 (95% CI, -2.97 to -0.92). Also lower was a molecular score reflecting the probability of antibody-mediated rejection (0.17 vs. 0.77) and the level of donor-derived cell-free DNA (0.31% vs. 0.82%). At week 52, the recurrence of antibody-mediated rejection was reported in 3 of 9 patients who had a response to felzartamab, with an increase in molecular activity and biomarker levels toward baseline levels. CONCLUSIONS: Felzartamab had acceptable safety and side-effect profiles in patients with antibody-mediated rejection. (Funded by MorphoSys and Human Immunology Biosciences; ClinicalTrials.gov number, NCT05021484; and EUDRACT number, 2021-000545-40.).

3.
J Autoimmun ; 147: 103243, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788537

ABSTRACT

OBJECTIVES: Autoreactive B cells and interferon (IFN) signature are hallmarks of primary sjögren's syndrome (pSS), but how IFN signaling pathways influence autoantibody production and clinical manifestations remain unclear. More detailed studies hold promise for improved diagnostic methodologies and personalized treatment. METHODS: We analyzed peripheral blood T and B cell subsets from 34 pSS patients and 38 healthy donors (HDs) at baseline and upon stimulation regarding their expression levels of type I and II IFN signaling molecules (STAT1/2, IRF1, IRF9). Additionally, we investigated how the levels of these molecules correlated with serological and clinical characteristics and performed ROC analysis. RESULTS: Patients showed elevated IFN pathway molecules, including STAT1, STAT2 and IRF9 among most T and B cell subsets. We found a reduced ratio of phosphorylated STAT1 and STAT2 in patients in comparison to HDs, although B cells from patients were highly responsive by increased phosphorylation upon IFN stimulation. Correlation matrices showed further interrelations between STAT1, IRF1 and IRF9 in pSS. Levels of STAT1 and IRF9 in T and B cells correlated with the IFN type I marker Siglec-1 (CD169) on monocytes. High levels of STAT1 and IRF9 within pSS B cells were significantly associated with hypergammaglobulinemia as well as anti-SSA/anti-SSB autoantibodies. Elevated STAT1 levels were found in patients with extraglandular disease and could serve as a biomarker for this subgroup (p < 0.01). Notably, IRF9 levels in T and B cells correlated with EULAR Sjögren's syndrome disease activity index (ESSDAI). CONCLUSION: Here, we provide evidence that in active pSS patients, enhanced IFN signaling incl. unphosphorylated STAT1 and STAT2 with IRFs entertain chronic T and B cell activation. Furthermore, increased STAT1 levels candidate as biomarker of extraglandular disease, while IRF9 levels can serve as biomarker for disease activity.

4.
Nat Commun ; 15(1): 4182, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755157

ABSTRACT

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Subject(s)
Antigens, CD19 , Bone Marrow , Interleukins , Plasma Cells , Humans , Plasma Cells/immunology , Interleukins/immunology , Interleukins/metabolism , Bone Marrow/immunology , Antigens, CD19/immunology , Antigens, CD19/metabolism , Immunity, Humoral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Bone Marrow Cells/immunology , Bone Marrow Cells/cytology , Single-Cell Analysis , Adult , B-Lymphocytes/immunology , Antibody-Producing Cells/immunology , Female , Male , Vaccination , Middle Aged , Diphtheria-Tetanus-Pertussis Vaccine/immunology
5.
Article in English | MEDLINE | ID: mdl-38549427

ABSTRACT

BACKGROUND AND HYPOTHESIS: The aim of this study was to quantify hypertension control and evaluate concordance between all commonly available blood pressure modalities in kidney transplant recipients (KTR). METHODS: For this prospective cross-sectional study 89 stable KTR were recruited at the Charité Transplant Outpatient Clinic. For each study participant office (manual office blood pressure 'MOBP' and automated office blood pressure 'AOBP'), 7-day home (HBPM) and 24-hour ambulatory blood pressure measurement (24h-ABPM) were performed. RESULTS: 80 of the 89 patients recruited had sufficient blood pressure recordings. Mean blood pressure for MOBP, AOBP, HBPM and 24h-ABPM was 129/73, 126/71, 131/85 and 130/81 mmHg, respectively. Uncontrolled hypertension, as defined by 24h-ABPM (mean ≥ 130/80 mmHg), was present in 53 (66%) patients. MOBP, AOBP and HBPM classified 19 (24%), 22 (28%) and 41 (51%) patients respectively as 'uncontrolled hypertensive'. The Bland-Altman plot showed good agreement between systolic MOBP, AOBP, HBPM and Daytime-ABPM (mean bias ± SD: -1 ± 13 mmHg, -4 ± 13 mmHg, 1 ± 10 mmHg, respectively). Uncontrolled nighttime hypertension was present in 74 (93%) KTR, with 71 (89%) patients showing a non-physiological dipping pattern. Moderate positive correlation between Daytime-ABPM/HBPM and Nighttime-ABPM (Pearson Correlation Coefficients: 0.62-0.73), followed by MOBP/AOBP (Pearson Correlation Coefficients: 0.49-0.59) was noted. eGFR and proteinuria displayed weak correlation with 24h-, Daytime- and Nighttime-ABPM (absolute values of Pearson Correlation Coefficients: 0.04-0.41). No robust association with either 24h-, Daytime- or Nighttime-ABPM was observed for volume status exams. CONCLUSIONS: Masked hypertension is highly prevalent in KTR, especially due to high rates of uncontrolled nighttime hypertension. HBPM shows the narrowest limits of agreement with Daytime-ABPM. Daytime-ABPM and HBPM show the highest, albeit clinically insufficient, correlation with Nighttime-ABPM. Systematic integration of 24h-ABPM into clinical practice, as proposed by the '2023 ESH Guidelines for the Management of arterial hypertension', should not be withheld for the KTR population. Clinical trials evaluating treatment of hypertension in KTR are urgently needed.

6.
JCI Insight ; 9(4)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206757

ABSTRACT

Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Down-Regulation , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer
7.
Transplantation ; 108(1): 148-160, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37309030

ABSTRACT

Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.


Subject(s)
Immunosuppressive Agents , Mycophenolic Acid , Humans , Mycophenolic Acid/therapeutic use , Abatacept , Immunosuppressive Agents/adverse effects , Tacrolimus/therapeutic use , Calcineurin Inhibitors/adverse effects , Immunosuppression Therapy , Sirolimus/pharmacology , Graft Rejection/prevention & control
8.
EClinicalMedicine ; 67: 102381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38152417

ABSTRACT

Background: Optimal initial tacrolimus dosing and early exposure of tacrolimus after renal transplantation is not well studied. Methods: In this open-label, 6 months, multicenter, randomized controlled, non-inferiority study, we randomly assigned 432 renal allograft recipients to receive basiliximab induction, mycophenolate and steroids and either standard prolonged-release tacrolimus (trough levels: 7-9 ng/ml; Standard Care arm), or an initial 7-day fixed 5 mg/day dose of prolonged-release tacrolimus followed by lower tacrolimus predose levels (trough levels: 5-7 ng/ml; Slow & Low arm). The primary end point was the combined incidence rate of biopsy-proven acute rejections (BPAR; including borderline), graft failure, or death at 6 months with a non-inferiority margin of 12.5%. (EudraCT-Nr: 2013-001770-19. Findings: The combined primary endpoint in the Slow & Low arm was non-inferior compared to the Standard Care arm (22.1% versus 20.7%; difference: 1.4%, 90% CI -5.5% to 8.3%). The overall rate of BPAR including borderlines was similar (Slow & Low 17.4% versus Standard Care 16.6%). Safety parameters such as delayed graft function, kidney function, donor specific HLA-antibodies, infections, or post-transplantation diabetes mellitus did not differ. Interpretation: This is the first study to show that an initial fixed dose of 5 mg per day followed by lower tacrolimus exposure is non-inferior compared to standard tacrolimus therapy and equally efficient and safe within 6 months after renal transplantation. These data suggest that therapeutic drug monitoring for prolonged release tacrolimus can be abandoned until start of the second week after transplantation. Funding: Investigator-initiated trial, financial support by Astellas Pharma GmbH.

9.
J Clin Med ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137615

ABSTRACT

Hepatitis C virus (HCV) infection can lead to hepatic fibrosis. The advent of direct-acting antivirals (DAAs) has substantially improved sustained virological response (SVR) rates. In this context, kidney transplant recipients (KTRs) are of particular interest due to their higher HCV infection rates and uncertain renal excretion and bioavailability of DAAs. We investigated liver stiffness after DAA treatment in 15 HCV-infected KTRs using ultrasound shear wave elastography (SWE) in comparison with magnetic resonance elastography (MRE). KTRs were treated with DAAs (daclatasvir and sofosbuvir) for three months and underwent SWE at baseline, end of therapy (EOT), and 3 (EOT+3) and 12 months (EOT+12) after EOT. Fourteen patients achieved SVR12. Shear wave speed (SWS)-as a surrogate parameter for tissue stiffness-was substantially lower at all three post-therapeutic timepoints compared with baseline (EOT: -0.42 m/s, p < 0.01; CI = -0.75--0.09, EOT+3: -0.43 m/s, p < 0.01; CI = -0.75--0.11, and EOT+12: -0.52 m/s, p < 0.001; CI = -0.84--0.19), suggesting liver regeneration after viral eradication and end of inflammation. Baseline SWS correlated positively with histopathological fibrosis scores (r = 0.48; CI = -0.11-0.85). Longitudinal results correlated moderately with APRI (r = 0.41; CI = 0.12-0.64) but not with FIB-4 scores (r = 0.12; CI = -0.19-0.41). Although higher on average, SWE-derived measurements correlated strongly with MRE (r = 0.64). In conclusion, SWE is suitable for non-invasive therapy monitoring in KTRs with HCV infection.

10.
Front Immunol ; 14: 1239519, 2023.
Article in English | MEDLINE | ID: mdl-37942315

ABSTRACT

Stem cell transplant recipients (SCTR) are imperiled to increased risks after SARS-CoV2 infection, supporting the need for effective vaccination strategies for this vulnerable group. With respect to pediatric patients, data on immunogenicity of SARS-CoV2 mRNA-based vaccination is limited. We therefore comprehensively examined specific humoral, B- and T cell responses in a cohort of 2-19 year old SCTR after the second and third vaccine dose. Only after booster vaccination, transplant recipients reached similar levels of vaccine-specific IgG, IgA and neutralizing antibodies against omicron variant as age-matched controls. Although frequencies of SARS-CoV2 specific B cells increased after the third dose, they were still fourfold reduced in patients compared to controls. Overall, the majority of individuals enrolled mounted SARS-CoV2 Spike protein-specific CD4+ T helper cell responses with patients showing significantly higher portions than controls after the third dose. With respect to functionality, however, SCTR were characterized by reduced frequencies of specific interferon gamma producing CD4+ T cells, along with an increase in IL-2 producers. In summary, our data identify distinct quantitative and qualitative impairments within the SARS-CoV2 vaccination specific B- and CD4+ T cell compartments. More importantly, humoral analyses highlight the need for a booster vaccination of SCTR particularly for development of neutralizing antibodies.


Subject(s)
COVID-19 , RNA, Viral , Humans , Child , Child, Preschool , Adolescent , Young Adult , Adult , Transplant Recipients , COVID-19/prevention & control , SARS-CoV-2 , Vaccines, Synthetic , Antibodies, Neutralizing , Stem Cell Transplantation , mRNA Vaccines
11.
Cell Host Microbe ; 31(11): 1866-1881.e10, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37944493

ABSTRACT

The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.


Subject(s)
COVID-19 , Microbiota , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus , Antibody Formation , Molecular Mimicry , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Immunoglobulin A, Secretory , Immunoglobulin G , Antibodies, Neutralizing
12.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37815874

ABSTRACT

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , Immunologic Memory , COVID-19/prevention & control , Lymphoid Tissue , Vaccination , RNA, Messenger , Antibodies, Viral
13.
J Clin Med ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37763043

ABSTRACT

Kidney transplant recipients (KTRs) show higher morbidity and mortality from COVID-19 than the general population and have an impaired response to vaccination. We analyzed COVID-19 incidence and clinical outcomes in a single-center cohort of approximately 2500 KTRs. Between 1 February 2020 and 1 July 2022, 578 KTRs were infected with SARS-CoV-2, with 25 (4%) recurrent infections. In total, 208 KTRs (36%) were hospitalized, and 39 (7%) died. Among vaccinated patients, infection with the Omicron variant had a mortality of 2%. Unvaccinated patients infected with the Omicron variant showed mortality (9% vs. 11%) and morbidity (hospitalization 52% vs. 54%, ICU admission 12% vs. 18%) comparable to the pre-Omicron era. Multivariable analysis revealed that being unvaccinated (OR = 2.15, 95% CI [1.38, 3.35]), infection in the pre-Omicron era (OR = 3.06, 95% CI [1.92, 4.87]), and higher patient age (OR = 1.04, 95% CI [1.03, 1.06]) are independent risk factors for COVID-19 hospitalization, whereas a steroid-free immunosuppressive regimen was found to reduce the risk of COVID-19 hospitalization (OR = 0.51, 95% CI [0.33, 0.79]). This suggests that both virological changes in the Omicron variant and vaccination reduce the risk for morbidity and mortality from COVID-19 in KTRs. Our data extend the knowledge from the general population to KTRs and provide important insights into outcomes during the Omicron era.

14.
Best Pract Res Clin Rheumatol ; : 101864, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37625930

ABSTRACT

Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.

15.
Nephrol Dial Transplant ; 39(1): 84-94, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37410616

ABSTRACT

BACKGROUND: De novo donor-specific antibodies (dnDSAs) may cause antibody-mediated rejection and graft dysfunction. Little is known about the clinical course after first detection of dnDSAs during screening in asymptomatic patients. We aimed to assess the value of estimated glomerular filtration rate (eGFR) and proteinuria to predict graft failure in patients with dnDSAs and their potential utility as surrogate endpoints. METHODS: All 400 kidney transplant recipients with dnDSAs at our centre (1 March 2000-31 May 2021) were included in this retrospective study. The dates of graft loss, rejection, doubling of creatinine, ≥30% eGFR decline, proteinuria ≥500 mg/g and ≥1000 mg/g were registered from the first dnDSA appearance. RESULTS: During 8.3 years of follow-up, graft failure occurred in 33.3% of patients. Baseline eGFR and proteinuria correlated with 5-year graft loss (area under the receiver operating characteristics curve 0.75 and 0.80, P < .001). Creatinine doubled after a median of 2.8 years [interquartile range (IQR) 1.5-5.0] from dnDSA and the time from doubling creatinine to graft failure was 1.0 year (IQR 0.4-2.9). Analysing eGFR reduction ≥30% as a surrogate endpoint (148/400), the time from dnDSA to this event was 2.0 years (IQR 0.6-4.2), with a positive predictive value (PPV) of 45.9% to predict graft loss, which occurred after 2.0 years (IQR 0.8-3.2). The median time from proteinuria ≥500 mg/g and ≥1000 mg/g to graft failure was identical, 1.8 years, with a PPV of 43.8% and 49.0%, respectively. Composite endpoints did not improve PPV. Multivariable analysis showed that rejection was the most important independent risk factor for all renal endpoints and graft loss. CONCLUSIONS: Renal function, proteinuria and rejection are strongly associated with graft failure in patients with dnDSA and may serve as surrogate endpoints.


Subject(s)
Kidney Transplantation , Humans , Retrospective Studies , Kidney Transplantation/adverse effects , Isoantibodies , Creatinine , Graft Rejection/diagnosis , Graft Rejection/etiology , Graft Survival , Biomarkers , Proteinuria/diagnosis , Proteinuria/etiology , Tissue Donors , HLA Antigens , Transplant Recipients
16.
BMJ Open ; 13(4): e071277, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37105693

ABSTRACT

INTRODUCTION: COVID-19 convalescent plasma (CCP) is a possible treatment option for COVID-19. A comprehensive number of clinical trials on CCP efficacy have already been conducted. However, many aspects of CCP treatment still require investigations: in particular (1) Optimisation of the CCP product, (2) Identification of the patient population in need and most likely to benefit from this treatment approach, (3) Timing of administration and (4) CCP efficacy across viral variants in vivo. We aimed to test whether high-titre CCP, administered early, is efficacious in preventing hospitalisation or death in high-risk patients. METHODS AND ANALYSIS: COVIC-19 is a multicentre, randomised, open-label, adaptive superiority phase III trial comparing CCP with very high neutralising antibody titre administered within 7 days of symptom onset plus standard of care versus standard of care alone. We will enrol patients in two cohorts of vulnerable patients [(1) elderly 70+ years, or younger with comorbidities; (2) immunocompromised patients]. Up to 1020 participants will be enrolled in each cohort (at least 340 with a sample size re-estimation after reaching 102 patients). The primary endpoint is the proportion of participants with (1) Hospitalisation due to progressive COVID-19, or (2) Who died by day 28 after randomisation. Principal analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION: Ethical approval has been granted by the University of Ulm ethics committee (#41/22) (lead ethics committee for Germany), Comité de protection des personnes Sud-Est I (CPP Sud-Est I) (#2022-A01307-36) (ethics committee for France), and ErasmusMC ethics committee (#MEC-2022-0365) (ethics committee for the Netherlands). Signed informed consent will be obtained from all included patients. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. TRIAL REGISTRATION: Clinical Trials.gov (NCT05271929), EudraCT (2021-006621-22).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Hospitalization , Immunization, Passive/methods , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
17.
Nephrol Dial Transplant ; 38(8): 1857-1866, 2023 07 31.
Article in English | MEDLINE | ID: mdl-36477607

ABSTRACT

BACKGROUND: High numbers of unknown classifications and inconsistent methodologies in previous studies make the interpretation of causes leading to graft loss difficult. In addition, data on a holistic view looking at both death with a functioning graft (DWFG) and death-censored graft failure (DCGF) are sparse. METHODS: In this single-centre study we included 1477 adult kidney transplants performed between 1997 and 2017, of which all 286 DWFGs until the end of observation were analysed and causes for death assigned. Additionally, the results were compared with the causes of 303 DCGFs of the same cohort to evaluate the impact of causes for overall graft loss. RESULTS: The most frequent causes for DWFG were cardiovascular disease (CVD) in 30.8%, malignancy in 28.3% and infections in 21%. Only 9.4% of reasons for DWFG were unknown. Sudden death occurred in 40% (35/88) of patients classified as DWFG due to CVD. Overall graft loss was related to the effect of immunosuppression in 36.2% [infection 20.9% (123/589), malignancy 15.3% (90/589)] and CVD in 22.4% (132/589). In 27.4% (161/589), graft failure was associated with underimmunosuppression (rejection). For infections (60 DWFG, 63 DCGF) and CVD (88 DWFG, 44 DCGF), a considerable overlap was observed between DWFG and DCGF. For patients >70 years of age at transplantation, medical events accounted for 78% of overall graft losses and only 6.5% were associated with rejection. CONCLUSIONS: DWFG and DCGF share more causes for graft loss than previously reported and sudden death plays an underestimated role in death with a functioning graft.


Subject(s)
Cardiovascular Diseases , Kidney Transplantation , Adult , Humans , Graft Rejection/etiology , Graft Survival , Immunosuppression Therapy , Kidney Transplantation/adverse effects
18.
J Clin Med ; 13(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38202107

ABSTRACT

(1) Background: CMV infections remain a problem after kidney transplantation, particularly if patients are refractory or resistant (r/r) to treatment with valganciclovir (VGCV) or ganciclovir (GCV). (2) Methods: In a single-center retrospective study, kidney transplant recipients (KTR) receiving letermovir (LTV) as rescue therapy for VGCV-/GCV-r/r CMV disease were analyzed regarding CMV history, immunosuppression, and outcomes. (3) Results: Of 201 KTR treated for CMV between 2017 and 2022, 8 patients received LTV following treatment failure with VGCV/GCV. All patients received CMV prophylaxis with VGCV according to the center's protocol, and 7/8 patients had a high-risk (D+/R-) CMV constellation. In seven of eight cases, rising CMV levels occurred during prophylaxis. In seven of eight patients, a mutation in UL97 associated with a decreased response to VGCV/GCV was detected. In four of eight patients, LTV resulted in CMV clearance after 24 ± 10 weeks (16-39 weeks), two of eight patients stabilized at viral loads <2000 cop/mL (6-20 weeks), and two of eight patients developed LTV resistance (range 8-10 weeks). (4) Conclusion: LTV, which is currently evaluated for CMV prophylaxis in kidney transplantation, also shows promising results for the treatment of patients with VGCV/GCV resistance despite the risk of developing LTV resistance. Additional studies are needed to further define its role in the treatment of patients with CMV resistance.

19.
Mol Ther Nucleic Acids ; 30: 621-632, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36514352

ABSTRACT

Human B lymphocytes are attractive targets for immunotherapies in autoantibody-mediated diseases. Gene editing technologies could provide a powerful tool to determine gene regulatory networks regulating B cell differentiation into plasma cells, and identify novel therapeutic targets for prevention and treatment of autoimmune disorders. Here, we describe a new approach that uses CRISPR-Cas9 technology to target genes in primary human B cells in vitro for identifying plasma cell regulators. We found that sgRNA and Cas9 components can be efficiently delivered into primary human B cells through RD114-pseudotyped retroviral vectors. Using this system, we achieved approximately 80% of gene knockout efficiency. We disrupted expression of a triad of transcription factors, IRF4, PRDM1, and XBP1, and showed that human B cell survival and plasma cell differentiation are severely impaired. Specifically, that IRF4, PRDM1, and XBP1 were expressed at different stages during plasma cell differentiation, IRF4, PRDM1, and XBP1-targeted B cells failed to progress to the pre-plasmablast, plasma cell state, and plasma cell survival, respectively. Our method opens a new avenue to study gene functions in primary human B cells and identify novel plasma cell regulators for therapeutic applications.

20.
Front Immunol ; 13: 1008438, 2022.
Article in English | MEDLINE | ID: mdl-36275695

ABSTRACT

Objectives: To determine the profile of cytokines in patients with severe COVID-19 who were enrolled in a trial of COVID-19 convalescent plasma (CCP). Methods: Patients were randomized to receive standard treatment and 3 CCP units or standard treatment alone (CAPSID trial, ClinicalTrials.gov NCT04433910). The primary outcome was a dichotomous composite outcome (survival and no longer severe COVID-19 on day 21). Time to clinical improvement was a key secondary endpoint. The concentrations of 27 cytokines were measured (baseline, day 7). We analyzed the change and the correlation between serum cytokine levels over time in different subgroups and the prediction of outcome in receiver operating characteristics (ROC) analyses and in multivariate models. Results: The majority of cytokines showed significant changes from baseline to day 7. Some were strongly correlated amongst each other (at baseline the cluster IL-1ß, IL-2, IL-6, IL-8, G-CSF, MIP-1α, the cluster PDGF-BB, RANTES or the cluster IL-4, IL-17, Eotaxin, bFGF, TNF-α). The correlation matrix substantially changed from baseline to day 7. The heatmaps of the absolute values of the correlation matrix indicated an association of CCP treatment and clinical outcome with the cytokine pattern. Low levels of IP-10, IFN-γ, MCP-1 and IL-1ß on day 0 were predictive of treatment success in a ROC analysis. In multivariate models, low levels of IL-1ß, IFN-γ and MCP-1 on day 0 were significantly associated with both treatment success and shorter time to clinical improvement. Low levels of IP-10, IL-1RA, IL-6, MCP-1 and IFN-γ on day 7 and high levels of IL-9, PDGF and RANTES on day 7 were predictive of treatment success in ROC analyses. Low levels of IP-10, MCP-1 and high levels of RANTES, on day 7 were associated with both treatment success and shorter time to clinical improvement in multivariate models. Conclusion: This analysis demonstrates a considerable dynamic of cytokines over time, which is influenced by both treatment and clinical course of COVID-19. Levels of IL-1ß and MCP-1 at baseline and MCP-1, IP-10 and RANTES on day 7 were associated with a favorable outcome across several endpoints. These cytokines should be included in future trials for further evaluation as predictive factors.


Subject(s)
COVID-19 , Cytokines , Humans , Interleukin 1 Receptor Antagonist Protein , Interleukin-17 , Chemokine CCL3 , Tumor Necrosis Factor-alpha , Interleukin-6 , Interleukin-4 , Capsid , COVID-19/therapy , Becaplermin , Chemokine CXCL10 , Interleukin-2 , Interleukin-8 , Interleukin-9 , Granulocyte Colony-Stimulating Factor , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...