Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2848: 85-103, 2025.
Article in English | MEDLINE | ID: mdl-39240518

ABSTRACT

Recent technological advances in single-cell RNA sequencing (scRNA-Seq) have enabled scientists to answer novel questions in biology with unparalleled precision. Indeed, in the field of ocular development and regeneration, scRNA-Seq studies have resulted in a number of exciting discoveries that have begun to revolutionize the way we think about these processes. Despite the widespread success of scRNA-Seq, many scientists are wary to perform scRNA-Seq experiments due to the uncertainty of obtaining high-quality viable cell populations that are necessary for the generation of usable data that enable rigorous computational analyses. Here, we describe methodology to reproducibility generate high-quality single-cell suspensions from embryonic zebrafish eyes. These single-cell suspensions served as inputs to the 10× Genomics v3.1 system and yielded high-quality scRNA-Seq data in proof-of-principle studies. In describing methodology to quantitatively assess cell yields, cell viability, and other critical quality control parameters, this protocol can serve as a useful starting point for others in designing their scRNA-Seq experiments in the zebrafish eye and in other developing or regenerating tissues in zebrafish or other model systems.


Subject(s)
Retina , Sequence Analysis, RNA , Single-Cell Analysis , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Single-Cell Analysis/methods , Retina/cytology , Retina/embryology , Retina/metabolism , Sequence Analysis, RNA/methods , Cell Separation/methods
2.
bioRxiv ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39314470

ABSTRACT

γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.

3.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36342203

ABSTRACT

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) continues to expand our knowledge by facilitating the study of transcriptional heterogeneity at the level of single cells. Despite this technology's utility and success in biomedical research, technical artifacts are present in scRNA-seq data. Doublets/multiplets are a type of artifact that occurs when two or more cells are tagged by the same barcode, and therefore they appear as a single cell. Because this introduces non-existent transcriptional profiles, doublets can bias and mislead downstream analysis. To address this limitation, computational methods to annotate and remove doublets form scRNA-seq datasets are needed. RESULTS: We introduce vaeda (Variational Auto-Encoder for Doublet Annotation), a new approach for computational annotation of doublets in scRNA-seq data. Vaeda integrates a variational auto-encoder and Positive-Unlabeled learning to produce doublet scores and binary doublet calls. We apply vaeda, along with seven existing doublet annotation methods, to 16 benchmark datasets and find that vaeda performs competitively in terms of doublet scores and doublet calls. Notably, vaeda outperforms other python-based methods for doublet annotation. Altogether, vaeda is a robust and competitive method for scRNA-seq doublet annotation and may be of particular interest in the context of python-based workflows. AVAILABILITY AND IMPLEMENTATION: Vaeda is available at https://github.com/kostkalab/vaeda, and the version used for the results we present here is archived at zenodo (https://doi.org/10.5281/zenodo.7199783). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biomedical Research , Software , Single-Cell Analysis/methods , Artifacts , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
4.
Commun Biol ; 5(1): 399, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35488063

ABSTRACT

Heart organoids have the potential to generate primary heart-like anatomical structures and hold great promise as in vitro models for cardiac disease. However, their properties have not yet been fully studied, which hinders their wide spread application. Here we report the development of differentiation systems for ventricular and atrial heart organoids, enabling the study of heart diseases with chamber defects. We show that our systems generate chamber-specific organoids comprising of the major cardiac cell types, and we use single cell RNA sequencing together with sample multiplexing to characterize the cells we generate. To that end, we developed a machine learning label transfer approach leveraging cell type, chamber, and laterality annotations available for primary human fetal heart cells. We then used this model to analyze organoid cells from an isogeneic line carrying an Ebstein's anomaly associated genetic variant in NKX2-5, and we successfully recapitulated the disease's atrialized ventricular defects. In summary, we have established a workflow integrating heart organoids and computational analysis to model heart development in normal and disease states.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Heart , Heart Ventricles , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Humans , Organogenesis/genetics , Organoids/metabolism
5.
Brain Res ; 1732: 146698, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32014531

ABSTRACT

PAX6 encodes a highly conserved transcription factor necessary for normal development of the eyes and central nervous system. Heterozygous loss-of-function mutations in PAX6 cause the disorder aniridia in humans and the Small eye trait in mice. Aniridia is a congenital and progressive disorder known for ocular phenotypes; however, recently, consequences of PAX6 haploinsufficiency in the brains of aniridia patients have been identified. These findings span structural and functional abnormalities, including deficits in cognitive and sensory processing. Furthermore, some of these abnormalities are accelerated as aniridia patients age. Although some functional abnormalities may be explained by structural changes, variability of results remain, and the effects of PAX6 heterozygous loss-of-function mutations on neuroanatomy, particularly with regard to aging, have yet to be resolved. Our study used high-resolution magnetic resonance imaging (MRI) and histology to investigate structural consequences of such mutations in the adult brain of our aniridia mouse model, Small eye Neuherberg allele (Pax6SeyNeu/+), at two adult age groups. Using both MRI and histology enables a direct comparison with human studies, while providing higher resolution for detection of more subtle changes. We show volumetric changes in major brain regions of the the Pax6SeyNeu/+ mouse compared to wild-type including genotype- and age-related olfactory bulb differences, age-related cerebellum differences, and genotype-related eye differences. We also show alterations in thickness of major interhemispheric commissures, particularly those anteriorly located within the brain including the optic chiasm, corpus callosum, and anterior commissure. Together, these genotype and age related changes to brain volumes and structures suggest a global decrease in adult brain structural plasticity in our Pax6SeyNeu/+ mice.


Subject(s)
Aniridia/diagnostic imaging , Brain/diagnostic imaging , Neuronal Plasticity/physiology , PAX6 Transcription Factor/genetics , Age Factors , Aging/physiology , Animals , Aniridia/genetics , Aniridia/pathology , Brain/pathology , Disease Models, Animal , Magnetic Resonance Imaging , Mice , Mice, Knockout , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL