Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nematol ; 542022.
Article in English | MEDLINE | ID: mdl-35224509

ABSTRACT

Plant parasitic nematodes are major pests on upland cotton worldwide and in the United States. The reniform nematode, Rotylenchulus reniformis and the southern root-knot nematode Meloidogyne incognita are some of the most damaging nematodes on cotton in the United States. Current management strategies focus on reducing nematode populations with nematicides. The objective of this research was to integrate additional fertilizer and nematicide combinations into current practices to establish economical nematode management strategies while promoting cotton yield and profit. Microplot and field trials were run to evaluate fertilizer and nematicide combinations applied at the pinhead square (PHS) and first bloom (FB) plant growth stages to reduce nematode population density and promote plant growth and yield. Cost efficiency was evaluated based on profit from lint yields and chemical input costs. Data combined from 2019 and 2020 suggested a nematicide seed treatment (ST) ST + (NH4)2SO4 + Vydate® C-LV + Max-In® Sulfur was the most effective in increasing seed cotton yields in the R. reniformis microplot trials. In R. reniformis field trials, a nematicide ST + (NH4)2SO4 + Vydate® C-LV at PHS supported the largest lint yield and profit per hectare at $1176. In M. incognita field trials, a nematicide ST + 28-0-0-5 + Vydate® C-LV + Max-In® Sulfur at PHS and FB supported the largest lint yields and profit per hectare at $784. These results suggest that combinations utilizing fertilizers and nematicides applied together across the season in addition to current fertility management show potential to promote yield and profit in R. reniformis and M. incognita infested cotton fields.

2.
Viruses ; 13(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34835036

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) was first reported in the United States (US) in 2017 from cotton plants in Alabama (AL) and has become widespread in cotton-growing states of the southern US. To investigate the genomic variability among CLRDV isolates in the US, complete genomes of the virus were obtained from infected cotton plants displaying mild to severe symptoms from AL, Florida, and Texas. Eight CLRDV genomes were determined, ranging in size from 5865 to 5867 bp, and shared highest nucleotide identity with other CLRDV isolates in the US, at 95.9-98.7%. Open reading frame (ORF) 0, encoding the P0 silencing suppressor, was the most variable gene, sharing 88.5-99.6% and 81.2-89.3% amino acid similarity with CLRDV isolates reported in cotton growing states in the US and in Argentina and Brazil in South America, respectively. Based on Bayesian analysis, the complete CLRDV genomes from cotton in the US formed a monophyletic group comprising three relatively divergent sister clades, whereas CLRDV genotypes from South America clustered as closely related sister-groups, separate from US isolates, patterns reminiscent of phylogeographical structuring. The CLRDV isolates exhibited a complex pattern of recombination, with most breakpoints evident in ORFs 2 and 3, and ORF5. Despite extensive nucleotide diversity among all available CLRDV genomes, purifying selection (dN/dS < 1) was implicated as the primary selective force acting on viral protein evolution.


Subject(s)
Genetic Variation , Genome, Viral/genetics , Luteoviridae/genetics , Evolution, Molecular , Genotype , Gossypium , Luteoviridae/classification , Luteoviridae/isolation & purification , Phylogeny , Phylogeography , Plant Diseases/virology , Recombination, Genetic , Selection, Genetic , Viral Proteins/genetics
3.
J Nematol ; 46(4): 365-75, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25580030

ABSTRACT

Rotylenchulus reniformis resistant LONREN-1×FM966 breeding lines developed at Auburn University have demonstrated that the nematode resistance is accompanied by severe stunting, limited growth, and low yields. The objectives of this study were to evaluate the effects of applying nematicides to selected LONREN breeding lines on R. reniformis nematode populations, plant stunting, and yield. Four resistant breeding lines from the LONREN-1×FM966 cross, one susceptible line from the LONREN-1×FM966 cross, as well as LONREN-1, BARBREN-713, and the susceptible cultivar DP393 were evaluated with and without nematicides in the presence of R. reniformis. In the greenhouse, nematicides increased plant height across all genotypes compared with no nematicide. Rotylenchulus reniformis populations were 50% lower in the resistant lines compared with the susceptible lines at 45 days after planting (DAP). In microplot and field trials, the phenotypic stunting of all genotypes was reduced by aldicarb with increases in plant heights at 30 and 75 DAP. Increases in yields were evident across all genotypes treated with aldicarb. In all three trial environments, BARBREN-713 outperformed the LONREN-derived lines as well as 'DP393' in seed cotton yields, while having significantly lower R. reniformis egg densities than the susceptible genotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...