Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Front Neurol ; 14: 1258895, 2023.
Article in English | MEDLINE | ID: mdl-38020603

ABSTRACT

Objective: To characterize how the proximity of deep brain stimulation (DBS) active contact locations relative to the cerebellothalamic tract (CTT) affect clinical outcomes in patients with essential tremor (ET). Background: DBS is an effective treatment for refractory ET. However, the role of the CTT in mediating the effect of DBS for ET is not well characterized. 7-Tesla (T) MRI-derived tractography provides a means to measure the distance between the active contact and the CTT more precisely. Methods: A retrospective review was conducted of 12 brain hemispheres in 7 patients at a single center who underwent 7T MRI prior to ventral intermediate nucleus (VIM) DBS lead placement for ET following failed medical management. 7T-derived diffusion tractography imaging was used to identify the CTT and was merged with the post-operative CT to calculate the Euclidean distance from the active contact to the CTT. We collected optimized stimulation parameters at initial programing, 1- and 2-year follow up, as well as a baseline and postoperative Fahn-Tolosa-Marin (FTM) scores. Results: The therapeutic DBS current mean (SD) across implants was 1.8 mA (1.8) at initial programming, 2.5 mA (0.6) at 1 year, and 2.9 mA (1.1) at 2-year follow up. Proximity of the clinically-optimized active contact to the CTT was 3.1 mm (1.2), which correlated with lower current requirements at the time of initial programming (R2 = 0.458, p = 0.009), but not at the 1- and 2-year follow up visits. Subjects achieved mean (SD) improvement in tremor control of 77.9% (14.5) at mean follow-up time of 22.2 (18.9) months. Active contact distance to the CTT did not predict post-operative tremor control at the time of the longer term clinical follow up (R2 = -0.073, p = 0.58). Conclusion: Active DBS contact proximity to the CTT was associated with lower therapeutic current requirement following DBS surgery for ET, but therapeutic current was increased over time. Distance to CTT did not predict the need for increased current over time, or longer term post-operative tremor control in this cohort. Further study is needed to characterize the role of the CTT in long-term DBS outcomes.

2.
Brain Stimul ; 16(2): 445-455, 2023.
Article in English | MEDLINE | ID: mdl-36746367

ABSTRACT

BACKGROUND: While deep brain stimulation (DBS) therapy can be effective at suppressing tremor in individuals with medication-refractory Essential Tremor, patient outcome variability remains a significant challenge across centers. Proximity of active electrodes to the cerebellothalamic tract (CTT) is likely important in suppressing tremor, but how tremor control and side effects relate to targeting parcellations within the CTT and other pathways in and around the ventral intermediate (VIM) nucleus of thalamus remain unclear. METHODS: Using ultra-high field (7T) MRI, we developed high-dimensional, subject-specific pathway activation models for 23 directional DBS leads. Modeled pathway activations were compared with post-hoc analysis of clinician-optimized DBS settings, paresthesia thresholds, and dysarthria thresholds. Mixed-effect models were utilized to determine how the six parcellated regions of the CTT and how six other pathways in and around the VIM contributed to tremor suppression and induction of side effects. RESULTS: The lateral portion of the CTT had the highest activation at clinical settings (p < 0.05) and a significant effect on tremor suppression (p < 0.001). Activation of the medial lemniscus and posterior-medial CTT was significantly associated with severity of paresthesias (p < 0.001). Activation of the anterior-medial CTT had a significant association with dysarthria (p < 0.05). CONCLUSIONS: This study provides a detailed understanding of the fiber pathways responsible for therapy and side effects of DBS for Essential Tremor, and suggests a model-based programming approach will enable more selective activation of lateral fibers within the CTT.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/therapy , Essential Tremor/etiology , Tremor/therapy , Dysarthria/etiology , Dysarthria/therapy , Deep Brain Stimulation/methods , Thalamus , Paresthesia/etiology , Treatment Outcome
3.
NPJ Parkinsons Dis ; 8(1): 116, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36097027

ABSTRACT

To elucidate the role of the basal ganglia during REM sleep movements in Parkinson's disease (PD) we recorded pallidal neural activity from four PD patients. Unlike desynchronization commonly observed during wakeful movements, beta oscillations (13-35 Hz) synchronized during REM sleep movements; furthermore, high-frequency oscillations (150-350 Hz) synchronized during movement irrespective of sleep-wake states. Our results demonstrate differential engagement of the basal ganglia during REM sleep and awake movements.

4.
Mov Disord ; 36(6): 1332-1341, 2021 06.
Article in English | MEDLINE | ID: mdl-33847406

ABSTRACT

BACKGROUND: Abnormal oscillatory neural activity in the beta-frequency band (13-35 Hz) is thought to play a role in Parkinson's disease (PD); however, increasing evidence points to alterations in high-frequency ranges (>100 Hz) also having pathophysiological relevance. OBJECTIVES: Studies have found that power in subthalamic nucleus (STN) high-frequency oscillations is increased with dopaminergic medication and during voluntary movements, implicating these brain rhythms in normal basal ganglia function. The objective of this study was to investigate whether similar signaling occurs in the internal globus pallidus (GPi), a nucleus increasingly used as a target for deep brain stimulation (DBS) for PD. METHODS: Spontaneous and movement-related GPi field potentials were recorded from DBS leads in 5 externalized PD patients on and off dopaminergic medication, as well as from 3 rhesus monkeys before and after the induction of parkinsonism with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine. RESULTS: In the parkinsonian condition, we identified a prominent oscillatory peak centered at 200-300 Hz that increased during movement. In patients the magnitude of high-frequency oscillation modulation was negatively correlated with bradykinesia. In monkeys, high-frequency oscillations were mostly absent in the naive condition but emerged after the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine. In patients, spontaneous high-frequency oscillations were significantly attenuated on-medication. CONCLUSIONS: Our findings provide evidence in support of the hypothesis that exaggerated, movement-modulated high-frequency oscillations in the GPi are pathophysiological features of PD. These findings suggest that the functional role(s) of high-frequency oscillations may differ between the STN and GPi and motivate additional investigations into their relationship to motor control in normal and diseased states.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Biomarkers , Globus Pallidus , Humans , Parkinson Disease/therapy
5.
Front Hum Neurosci ; 15: 631778, 2021.
Article in English | MEDLINE | ID: mdl-33679351

ABSTRACT

Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established therapy for Parkinson's disease motor symptoms. The ideal site for implantation within STN, however, remains controversial. While many argue that placement of a DBS lead within the sensorimotor territory of the STN yields better motor outcomes, others report similar effects with leads placed in the associative or motor territory of the STN, while still others assert that placing a DBS lead "anywhere within a 6-mm-diameter cylinder centered at the presumed middle of the STN (based on stereotactic atlas coordinates) produces similar clinical efficacy." These discrepancies likely result from methodological differences including targeting preferences, imaging acquisition and the use of brain atlases that do not account for patient-specific anatomic variability. We present a first-in-kind within-patient demonstration of severe mood side effects and minimal motor improvement in a Parkinson's disease patient following placement of a DBS lead in the limbic/associative territory of the STN who experienced marked improvement in motor benefit and resolution of mood side effects following repositioning the lead within the STN sensorimotor territory. 7 Tesla (7 T) magnetic resonance imaging (MRI) data were used to generate a patient-specific anatomical model of the STN with parcellation into distinct functional territories and computational modeling to assess the relative degree of activation of motor, associative and limbic territories.

7.
Stereotact Funct Neurosurg ; 98(5): 300-312, 2020.
Article in English | MEDLINE | ID: mdl-32485728

ABSTRACT

BACKGROUND: The introduction of intracranial air (ICA) during deep brain stimulation (DBS) surgery is thought to have a negative influence on targeting and clinical outcomes. OBJECTIVE: To investigate ICA volumes following surgery and other patient-specific factors as potential variables influencing translocation of the DBS electrode and proximal lead bowing. METHODS: High-resolution postoperative computed tomography scans (≤1.0 mm resolution in all directions) within 24 h following DBS surgery and 4-6 weeks of follow-up were acquired. A total of 50 DBS leads in 33 patients were available for analysis. DBS leads included Abbott/St. Jude Medical InfinityTM, Boston Scientific VerciseTM, and Medtronic 3389TM. RESULTS: Both ICA volume and anatomical target were significantly associated with measures of DBS electrode translocation. ICA volume and DBS lead model were found to be significant predictors of proximal lead bowing. Measures of proximal lead bowing and translocation along the electrode trajectory for the Medtronic 3389TM DBS lead were significantly larger than measures for the Abbott/St. Jude Medical InfinityTM and Boston Scientific VerciseTM DBS leads. CONCLUSION: The association between ICA volume and translocation of the DBS electrode is small in magnitude and not clinically relevant for DBS cases within a normal range of postoperative subdural air volumes. Differences in proximal lead bowing observed between DBS leads may reflect hardware engineering subtleties in the construction of DBS lead models.


Subject(s)
Deep Brain Stimulation/instrumentation , Electrodes, Implanted , Movement Disorders/diagnostic imaging , Movement Disorders/therapy , Adult , Aged , Deep Brain Stimulation/methods , Dystonia/diagnostic imaging , Dystonia/therapy , Essential Tremor/diagnostic imaging , Essential Tremor/therapy , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Tomography, X-Ray Computed/methods
8.
Lancet Neurol ; 19(6): 491-501, 2020 06.
Article in English | MEDLINE | ID: mdl-32470421

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus is an established therapeutic option for managing motor symptoms of Parkinson's disease. We conducted a double-blind, sham-controlled, randomised controlled trial to assess subthalamic nucleus DBS, with a novel multiple independent contact current-controlled (MICC) device, in patients with Parkinson's disease. METHODS: This trial took place at 23 implanting centres in the USA. Key inclusion criteria were age between 22 and 75 years, a diagnosis of idiopathic Parkinson's disease with over 5 years of motor symptoms, and stable use of anti-parkinsonian medications for 28 days before consent. Patients who passed screening criteria were implanted with the DBS device bilaterally in the subthalamic nucleus. Patients were randomly assigned in a 3:1 ratio to receive either active therapeutic stimulation settings (active group) or subtherapeutic stimulation settings (control group) for the 3-month blinded period. Randomisation took place with a computer-generated data capture system using a pre-generated randomisation table, stratified by site with random permuted blocks. During the 3-month blinded period, both patients and the assessors were masked to the treatment group while the unmasked programmer was responsible for programming and optimisation of device settings. The primary outcome was the difference in mean change from baseline visit to 3 months post-randomisation between the active and control groups in the mean number of waking hours per day with good symptom control and no troublesome dyskinesias, with no increase in anti-parkinsonian medications. Upon completion of the blinded phase, all patients received active treatment in the open-label period for up to 5 years. Primary and secondary outcomes were analysed by intention to treat. All patients who provided informed consent were included in the safety analysis. The open-label phase is ongoing with no new enrolment, and current findings are based on the prespecified interim analysis of the first 160 randomly assigned patients. The study is registered with ClinicalTrials.gov, NCT01839396. FINDINGS: Between May 17, 2013, and Nov 30, 2017, 313 patients were enrolled across 23 sites. Of these 313 patients, 196 (63%) received the DBS implant and 191 (61%) were randomly assigned. Of the 160 patients included in the interim analysis, 121 (76%) were randomly assigned to the active group and 39 (24%) to the control group. The difference in mean change from the baseline visit (post-implant) to 3 months post-randomisation in increased ON time without troublesome dyskinesias between the active and control groups was 3·03 h (SD 4·52, 95% CI 1·3-4·7; p<0·0001). 26 serious adverse events in 20 (13%) patients occurred during the 3-month blinded period. Of these, 18 events were reported in the active group and 8 in the control group. One death was reported among the 196 patients before randomisation, which was unrelated to the procedure, device, or stimulation. INTERPRETATION: This double-blind, sham-controlled, randomised controlled trial provides class I evidence of the safety and clinical efficacy of subthalamic nucleus DBS with a novel MICC device for the treatment of motor symptoms of Parkinson's disease. Future trials are needed to investigate potential benefits of producing a more defined current field using MICC technology, and its effect on clinical outcomes. FUNDING: Boston Scientific.


Subject(s)
Deep Brain Stimulation/methods , Parkinson Disease/therapy , Subthalamic Nucleus/metabolism , Adult , Aged , Double-Blind Method , Dyskinesias/therapy , Female , Humans , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Treatment Outcome
9.
Neurobiol Dis ; 139: 104819, 2020 06.
Article in English | MEDLINE | ID: mdl-32088379

ABSTRACT

The goal of this study was to characterize the spectral characteristics and spatial topography of local field potential (LFP) activity in the internal segment of the globus pallidus (GPi) in patients with Parkinson's disease utilizing directional (segmented) deep brain stimulation (dDBS) leads. Data were collected from externalized dDBS leads of three patients with idiopathic Parkinson's disease after overnight withdrawal of parkinsonian medication at rest and during a cued reach-to-target task. Oscillatory activity across lead contacts/segments was examined in the context of lead locations and contact orientations determined using co-registered preoperative 7 Tesla (T) MRI and postoperative CT scans. Each of the three patients displayed a unique frequency spectrum of oscillatory activity in the pallidum, with prominent peaks ranging from 5 to 35 Hz, that modulated variably across subjects during volitional movement. Despite subject-specific spectral profiles, a consistent finding across patients was that oscillatory power was strongest and had the largest magnitude of modulation during movement in LFPs recorded from segments facing the postero-lateral "sensorimotor" region of GPi, whereas antero-medially-directed segmented contacts facing the internal capsule and/or anterior GPi, had relatively weaker LFP power and less modulation in the 5 to 35 Hz. In each subject, contact configurations chosen for clinically therapeutic stimulation (following data collection and blinded to physiology recordings), were in concordance with the contact pairs showing the largest amplitude of LFP oscillations in the 5-35 Hz range. Although limited to three subjects, these findings provide support for the hypothesis that the sensorimotor territory of the GPi corresponds to the site of maximal power of oscillatory activity in the 5 to 35 Hz and provides the greatest benefit in motor signs during stimulation in the GPi. Variability in oscillatory activity across patients is likely related to Parkinson's disease phenotype as well as small differences in recording location (i.e. lead location), highlighting the importance of lead location for optimizing stimulation efficacy. These data also provide compelling evidence for the use of LFP activity for the development of predictive stimulation models that may optimize patient benefits while reducing clinic time needed for programming.


Subject(s)
Deep Brain Stimulation/methods , Globus Pallidus/physiopathology , Parkinson Disease/therapy , Action Potentials/physiology , Beta Rhythm/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Parkinson Disease/physiopathology
10.
Mov Disord ; 34(11): 1722-1727, 2019 11.
Article in English | MEDLINE | ID: mdl-31483534

ABSTRACT

BACKGROUND: In patients with Parkinson's disease, stimulation above the subthalamic nucleus (STN) may engage the pallidofugal fibers and directly suppress dyskinesia. OBJECTIVES: The objective of this study was to evaluate the effect of interleaving stimulation through a dorsal deep brain stimulation contact above the STN in a cohort of PD patients and to define the volume of tissue activated with antidyskinesia effects. METHODS: We analyzed the Core Assessment Program for Surgical Interventional Therapies dyskinesia scale, Unified Parkinson's Disease Rating Scale parts III and IV, and other endpoints in 20 patients with interleaving stimulation for management of dyskinesia. Individual models of volume of tissue activated and heat maps were used to identify stimulation sites with antidyskinesia effects. RESULTS: The Core Assessment Program for Surgical Interventional Therapies dyskinesia score in the on medication phase improved 70.9 ± 20.6% from baseline with noninterleaved settings (P < 0.003). With interleaved settings, dyskinesia improved 82.0 ± 27.3% from baseline (P < 0.001) and 61.6 ± 39.3% from the noninterleaved phase (P = 0.006). The heat map showed a concentration of volume of tissue activated dorsally to the STN during the interleaved setting with an antidyskinesia effect. CONCLUSION: Interleaved deep brain stimulation using the dorsal contacts can directly suppress dyskinesia, probably because of the involvement of the pallidofugal tract, allowing more conservative medication reduction. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Dyskinesias/therapy , Parkinson Disease/therapy , Subthalamic Nucleus/surgery , Deep Brain Stimulation/methods , Female , Humans , Male , Middle Aged , Treatment Outcome
11.
JAMA Neurol ; 75(3): 353-359, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29340590

ABSTRACT

Importance: Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome. Objective: To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome. Design, Setting, and Participants: The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide. Exposures: Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]). Main Outcomes and Measures: Scores on the Yale Global Tic Severity Scale and adverse events. Results: The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P < .001). The mean (SD) motor tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P < .001), and the mean (SD) phonic tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P < .001). The overall adverse event rate was 35.4% (56 of 158 patients), with intracranial hemorrhage occurring in 2 patients (1.3%), infection in 4 patients with 5 events (3.2%), and lead explantation in 1 patient (0.6%). The most common stimulation-induced adverse effects were dysarthria (10 [6.3%]) and paresthesia (13 [8.2%]). Conclusions and Relevance: Deep brain stimulation was associated with symptomatic improvement in patients with Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.


Subject(s)
Deep Brain Stimulation/methods , Registries , Tourette Syndrome/therapy , Treatment Outcome , Adolescent , Adult , Cohort Studies , Databases, Factual/statistics & numerical data , Female , Globus Pallidus/physiology , Humans , International Cooperation , Male , Middle Aged , Severity of Illness Index , Single-Blind Method , Thalamus/physiology , Young Adult
12.
Neuromodulation ; 21(8): 748-754, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29232019

ABSTRACT

OBJECTIVE: Voice tremor is a common feature of essential tremor (ET) that is difficult to treat medically and significantly affects quality of life. Deep brain stimulation (DBS) of the ventral intermediate nucleus (Vim) of the thalamus is effective in improving contralateral distal limb tremor and has been shown in limited studies to affect voice tremor. Our objective was to retrospectively evaluate whether Vim-DBS used to treat patients with essential motor tremor also effectively treated underlying concurrent voice tremor and assess whether particular lead locations were favorable for treating vocal tremor. MATERIALS AND METHODS: In this retrospective cohort study, patients had unilateral or bilateral lead placement and were monitored for up to 12 months. We used the Fahn-Tolosa-Marin (FTM) subscore to assess vocal tremor. Changes in vocal tremor before and after stimulation and over several sessions were assessed. RESULTS: Of the 77 patients who met the inclusion criteria and were treated for essential tremor, 20 (26%) patients had vocal tremor prior to stimulation. Active Vim-DBS decreased the amplitude of voice tremor by 80% (p < 0.001). The mean FTM score as 1.24 pre-operation, 1.08 post-implantation (consistent with a lesion effect), and 0.25 with stimulation. The effect magnitude was maintained at last follow-up with slight improvement over time (p < 0.05). Unilateral and bilateral stimulation resulted in similar degrees of tremor reduction. A model of the centroid of stimulation showed that Vim thalamic stimulation that is more anterior on average yielded better voice tremor control, significantly so on the left side (p < 0.05). Additionally, there was improvement in head, tongue, and face tremor scores (p < 0.05). CONCLUSIONS: Unilateral and bilateral Vim-DBS targeted to treat the motor component of essential tremor also dramatically decreased the amplitude of voice tremor in this group of patients, suggesting a potential benefit of this treatment for affected patients.


Subject(s)
Deep Brain Stimulation/methods , Essential Tremor/therapy , Thalamus/physiology , Voice Disorders/etiology , Voice Disorders/therapy , Aged , Aged, 80 and over , Cohort Studies , Essential Tremor/complications , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
13.
Front Neurosci ; 10: 170, 2016.
Article in English | MEDLINE | ID: mdl-27199634

ABSTRACT

Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in general positive. The reported interventions have, however, been variable, and there remain non-standardized selection criteria, various brain targets, differences in hardware, as well as variability in the programming parameters utilized. DBS centers perform only a handful of TS DBS cases each year, making large-scale outcomes difficult to study and to interpret. These limitations, coupled with the variable effect of surgery, and the overall small numbers of TS patients with DBS worldwide, have delayed regulatory agency approval (e.g., FDA and equivalent agencies around the world). The Tourette Association of America, in response to the worldwide need for a more organized and collaborative effort, launched an international TS DBS registry and database. The main goal of the project has been to share data, uncover best practices, improve outcomes, and to provide critical information to regulatory agencies. The international registry and database has improved the communication and collaboration among TS DBS centers worldwide. In this paper we will review some of the key operation details for the international TS DBS database and registry.

14.
Int J Neurosci ; 125(7): 475-85, 2015.
Article in English | MEDLINE | ID: mdl-25526555

ABSTRACT

The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.


Subject(s)
Deep Brain Stimulation/methods , International Cooperation , Parkinson Disease/therapy , Tourette Syndrome/therapy , Animals , Brain/physiology , Humans
15.
Mov Disord ; 30(4): 448-71, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25476818

ABSTRACT

Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.


Subject(s)
Deep Brain Stimulation/methods , Guidelines as Topic , Tourette Syndrome/therapy , Deep Brain Stimulation/trends , Humans , Tourette Syndrome/diagnosis
16.
Curr Opin Neurol ; 27(4): 484-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24978639

ABSTRACT

PURPOSE OF REVIEW: This update summarizes progress in understanding Tourette syndrome clinical characteristics, etiology, and treatment over the past year. RECENT FINDINGS: Premonitory sensory phenomena were found to have important impacts on Tourette syndrome quality of life. A rare genetic form of Tourette syndrome due to L-histidine-decarboxylase mutation, with similar features in human and rodent, has inspired new research on functional anatomy of Tourette syndrome. In response to new data, treatment guidelines have been revised to include behavioral therapy as first-line treatment. Novel dopamine receptor antagonists aripiprazole and ecopipam have shown potential efficacy - as well as tolerability concerns. Recent work has suggested efficacy and tolerability of topiramate and fluphenazine, but more rigorous studies are needed to further understand their role in Tourette syndrome management. Recent consensus guidelines explain when deep brain stimulation can be considered for severe refractory cases under a multidisciplinary team. SUMMARY: More research is needed to identify better tolerated treatments for, to understand pathophysiology or functional anatomy of, and to predict or influence longitudinal outcome of Tourette syndrome.


Subject(s)
Disease Management , Mental Disorders/etiology , Tourette Syndrome/complications , Tourette Syndrome/therapy , Alcohol Oxidoreductases/genetics , Aripiprazole , Benzazepines/therapeutic use , Cerebellar Nuclei , Dopamine Antagonists/therapeutic use , Humans , Mutation/genetics , Piperazines/therapeutic use , Quinolones/therapeutic use , Tourette Syndrome/genetics , Tourette Syndrome/pathology
17.
Case Rep Neurol Med ; 2013: 691840, 2013.
Article in English | MEDLINE | ID: mdl-23365773

ABSTRACT

Factor-Xa inhibitors like edoxaban have been shown to have comparable or superior rates of stroke and systemic embolization prevention to warfarin while exhibiting lower clinically significant bleeding rates. The authors report a case of a man who presented with delayed, recurrent intracranial hemorrhage months after successful deep brain stimulator placement for Parkinson disease while on edoxaban for atrial fibrillation. Further reports on the use of novel anticoagulants after intracranial surgery are acutely needed to help assess the true relative risk they pose.

18.
Stereotact Funct Neurosurg ; 88(5): 304-10, 2010.
Article in English | MEDLINE | ID: mdl-20588082

ABSTRACT

BACKGROUND/AIMS: Tardive dystonia (TD) can be a highly disabling, permanent condition related to the use of dopamine-receptor-blocking medications. Our aim was to evaluate the long-term effect of bilateral pallidal deep brain stimulation (DBS) for TD. METHODS: Five consecutive patients with disabling TD who underwent stereotactic placement of bilateral globus pallidus internus DBS leads were included. All patients had a history of mood disorder or schizophrenia previously treated with neuroleptic medication, with a mean duration of motor symptoms of 10.2 years. Dystonia severity was measured using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) movement score by a blinded neurologist reviewing pre- and postoperative videotaped examinations. RESULTS: The mean baseline movement BFMDRS score was 49.7 (range 20-88). Overall, we observed a mean reduction of 62% in the BFMDRS movement score within the first year after surgery. Persistent improvement in dystonia (71%) was seen at the last follow-up ranging from 2 to 8 years after surgery. CONCLUSION: Our experience suggests that pallidal DBS can be an effective therapy with long-term benefits for patients with TD.


Subject(s)
Deep Brain Stimulation , Dopamine Antagonists/adverse effects , Dyskinesia, Drug-Induced/therapy , Globus Pallidus/surgery , Adult , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Mood Disorders/drug therapy , Retrospective Studies , Schizophrenia/drug therapy , Severity of Illness Index , Treatment Outcome
19.
Rev Neurol Dis ; 7(1): 32-3; discussion 39-42, 2010.
Article in English | MEDLINE | ID: mdl-20410860

ABSTRACT

Children presenting with progressive neurologic symptoms including dystonia, dysarthria, and spasticity can represent a diagnostic challenge. Here we describe the case of a 14-year-old boy who presented to our center with an 11-year history of gradual worsening neurologic symptoms. Diagnostic strategies focus on the use of neuroimaging and genetic testing to help establish the underlying diagnosis. Therapeutic options are also discussed.


Subject(s)
Dysarthria/complications , Dystonia/complications , Gait Disorders, Neurologic/complications , Muscle Spasticity/complications , Pantothenate Kinase-Associated Neurodegeneration/complications , Adolescent , Basal Ganglia/pathology , Deglutition Disorders/complications , Deglutition Disorders/pathology , Diagnosis, Differential , Dysarthria/pathology , Dystonia/pathology , Gait Disorders, Neurologic/pathology , Humans , Magnetic Resonance Imaging , Male , Muscle Spasticity/pathology , Pantothenate Kinase-Associated Neurodegeneration/pathology , Substantia Nigra/pathology
20.
Mov Disord ; 25(2): 228-31, 2010 Jan 30.
Article in English | MEDLINE | ID: mdl-20063432

ABSTRACT

We recently found a higher rate of prolonged amphetamine exposure in patients diagnosed with Parkinson's disease (PD) than in spouse/caregiver controls. Since distinguishing features have been described in some patients with parkinsonism due to environment exposures (e.g., manganese), we sought to compare the clinical features of patients with PD with prolonged amphetamine exposure with unexposed patients with PD. Prolonged exposure was defined as a minimum of twice a week for >or=3 months, or weekly use >or=1 year. We reviewed the clinical records of patients with PD who had participated in a telephone survey of drug and environmental exposures and compared the clinical features of patients with a history of prolonged amphetamine exposure to patients who had no such exposure. Records were available for 16 of 17 (94%) patients with prior amphetamine exposure and 127 of 137 (92%) of those unexposed. Age at diagnosis was younger in the amphetamine-exposed group (49.8 +/- 8.2 years vs. 53.1 +/- 7.4 years; P < 0.05), but other features, including presenting symptoms, initial and later treatments, development of motor fluctuations, and MRI findings were similar between these groups. Because we did not detect clinical features that differentiate parkinsonism in patients with prolonged amphetamine exposure, research to determine whether amphetamine exposure is a risk factor for parkinsonism will require detailed histories of medication and recreational drug use.


Subject(s)
Amphetamine/poisoning , Dopamine Agents/poisoning , Parkinsonian Disorders/chemically induced , Adult , Amphetamine-Related Disorders/epidemiology , Amphetamine-Related Disorders/etiology , Case-Control Studies , Environmental Exposure , Female , Follow-Up Studies , Humans , Male , Medical Records , Middle Aged , Parkinsonian Disorders/epidemiology , Parkinsonian Disorders/physiopathology , Retrospective Studies , Risk Factors , Surveys and Questionnaires , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...