Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Methods Enzymol ; 700: 329-348, 2024.
Article in English | MEDLINE | ID: mdl-38971605

ABSTRACT

As the primary products of lipid oxidation, lipid hydroperoxides constitute an important class of lipids generated by aerobic metabolism. However, despite several years of effort, the structure of the hydroperoxidized bilayer has not yet been observed under electron microscopy. Here we use a 200 kV Cryo-TEM to image small unilamellar vesicles (SUVs) made (i) of pure POPC or SOPC, (ii) of their pure hydroperoxidized form, and (iii) of their equimolar mixtures. We show that the challenges posed by the determination of the thickness of the hydroperoxidized bilayers under these observation conditions can be addressed by an image analysis method that we developed and describe here.


Subject(s)
Cryoelectron Microscopy , Lipid Bilayers , Phosphatidylcholines , Unilamellar Liposomes , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Cryoelectron Microscopy/methods , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Phosphatidylcholines/chemistry , Oxidation-Reduction , Image Processing, Computer-Assisted/methods , Lipid Peroxides/chemistry , Lipid Peroxides/analysis
2.
Biophys J ; 123(7): 901-908, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38449310

ABSTRACT

A cell-penetrating peptide (CPP) is a short amino-acid sequence capable of efficiently translocating across the cellular membrane of mammalian cells. However, the potential of CPPs as a delivery vector is hampered by the strong reduction of its translocation efficiency when it bears an attached molecular cargo. To overcome this problem, we used previously developed diblock copolymers of elastin-like polypeptides (ELPBCs), which we end functionalized with TAT (transactivator of transcription), an archetypal CPP built from a positively charged amino acid sequence of the HIV-1 virus. These ELPBCs self-assemble into micelles at a specific temperature and present the TAT peptide on their corona. These micelles can recover the lost membrane affinity of TAT and can trigger interactions with the membrane despite the presence of a molecular cargo. Herein, we study the influence of membrane surface charge on the adsorption of TAT-functionalized ELP micelles onto giant unilamellar vesicles (GUVs). We show that the TAT-ELPBC micelles show an increased binding constant toward negatively charged membranes compared to neutral membranes, but no translocation is observed. The affinity of the TAT-ELPBC micelles for the GUVs displays a stepwise dependence on the lipid charge of the GUV, which, to our knowledge, has not been reported previously for interactions between peptides and lipid membranes. By unveiling the key steps controlling the interaction of an archetypal CPP with lipid membranes, through regulation of the charge of the lipid bilayer, our results pave the way for a better design of delivery vectors based on CPPs.


Subject(s)
Cell-Penetrating Peptides , Micelles , Animals , Elastin-Like Polypeptides , Adsorption , Lipid Bilayers/chemistry , Peptides/chemistry , Unilamellar Liposomes/chemistry , Cell-Penetrating Peptides/chemistry , Mammals/metabolism
3.
Proc Natl Acad Sci U S A ; 120(11): e2213112120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36881617

ABSTRACT

The standard model of pore formation was introduced more than fifty years ago, and it has been since, despite some refinements, the cornerstone for interpreting experiments related to pores in membranes. A central prediction of the model concerning pore opening under an electric field is that the activation barrier for pore formation is lowered proportionally to the square of the electric potential. However, this has only been scarcely and inconclusively confronted to experiments. In this paper, we study the electropermeability of model lipid membranes composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) containing different fractions of POPC-OOH, the hydroperoxidized form of POPC, in the range 0 to 100 mol %. By measuring ion currents across a 50-µm-diameter black lipid membrane (BLM) with picoampere and millisecond resolution, we detect hydroperoxidation-induced changes to the intrinsic bilayer electropermeability and to the probability of opening angstrom-size or larger pores. Our results over the full range of lipid compositions show that the energy barrier to pore formation is lowered linearly by the absolute value of the electric field, in contradiction with the predictions of the standard model.


Subject(s)
Electricity , Phosphorylcholine , Ion Transport , Membranes , Lipids
4.
Commun Chem ; 6(1): 15, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36697756

ABSTRACT

Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.

5.
Biochim Biophys Acta Biomembr ; 1863(10): 183659, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34052197

ABSTRACT

Lipid hydroperoxides are the primary reaction products of lipid oxidation, a natural outcome of life under oxygen. While playing a major role in cell metabolism, the microscopic origins of the effects of lipid hydroperoxidation on biomembranes remain elusive. Here we probe the polar structure of partially to fully hydroperoxidized bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) by a combination of environment-sensitive fluorescent probes and coarse-grained Martini numerical simulations. We find that the inserted organic hydroperoxide group -OOH migrates preferentially to the surface for bilayers with small fractions of hydroperoxidized lipids, but populates also significantly the bilayer interior for larger fractions. Our findings suggest that by modifying the intimate polarity of biomembranes, lipid peroxidation will have a significant impact on the activity of transmembrane proteins and on the bio-medical efficiency of membrane active molecules such as cell-penetrating and antimicrobial peptides.


Subject(s)
Hydrogen Peroxide/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Spectrometry, Fluorescence
6.
Soft Matter ; 17(16): 4275-4281, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33687403

ABSTRACT

Living or artificial self-propelled colloidal particles show original dynamics when they interact with other objects like passive particles, interfaces or membranes. These active colloids can transport small cargos or can be guided by passive objects, performing simple tasks that could be implemented in more complex systems. Here, we present an experimental investigation at the single particle level of the interaction between isolated active colloids and giant unilamellar lipid vesicles. We observed a persistent orbital motion of the active particle around the vesicle, which is independent of both the particle and the vesicle sizes. Force and torque transfers between the active particle and the vesicle is also described. These results differ in many aspects from recent theoretical and experimental reports on active particles interacting with solid spheres or liquid drops, and may be relevant for the study of swimming particles interacting with cells in biology or with microplastics in environmental science.


Subject(s)
Colloids , Plastics , Membranes , Motion , Unilamellar Liposomes
7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468682

ABSTRACT

Growth of plastic waste in the natural environment, and in particular in the oceans, has raised the accumulation of polystyrene and other polymeric species in eukyarotic cells to the level of a credible and systemic threat. Oligomers, the smallest products of polymer degradation or incomplete polymerization reactions, are the first species to leach out of macroscopic or nanoscopic plastic materials. However, the fundamental mechanisms of interaction between oligomers and polymers with the different cell components are yet to be elucidated. Simulations performed on lipid bilayers showed changes in membrane mechanical properties induced by polystyrene, but experimental results performed on cell membranes or on cell membrane models are still missing. We focus here on understanding how embedded styrene oligomers affect the phase behavior of model membranes using a combination of scattering, fluorescence, and calorimetric techniques. Our results show that styrene oligomers disrupt the phase behavior of lipid membranes, modifying the thermodynamics of the transition through a spatial modulation of lipid composition.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Lipid Bilayers/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Polystyrenes/chemistry , Seawater/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Deuterium/chemistry , Humans , Kinetics , Phase Transition , Temperature , Thermodynamics , Water Pollution
8.
ACS Appl Mater Interfaces ; 12(20): 22601-22612, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32374145

ABSTRACT

The deposition of polyelectrolyte multilayers, obtained by the layer-by-layer (LbL) method, is a well-established technology to design biocompatible and antibacterial coatings aimed at preventing implant-associated infections. Several types of LbL films have been reported to exhibit antiadhesive and/or antibacterial (contact-killing or release-killing) properties governed not only by the incorporated compounds but also by their buildup conditions or their postbuildup treatments. Tannic acid (TA), a natural polyphenol, is known to inhibit the growth of several bacterial strains. In this work, we developed TA/collagen (TA/COL) LbL films built in acetate or citrate buffers at pH 4. Surprisingly, the used buffer impacts not only the physicochemical but also the antibacterial properties of the films. When incubated in physiological conditions, both types of TA/COL films released almost the same amount of TA depending on the last layer and showed an antibacterial effect against Staphylococcus aureus only for citrate-built films. Because of their granular topography, TA/COL citrate films exhibited an efficient release-killing effect with no cytotoxicity toward human gingival fibroblasts. Emphasis is put on a comprehensive evaluation of the physicochemical parameters driving the buildup and the antibacterial property of citrate films. Specifically, complexation strengths between TA and COL are different in the presence of the two buffers affecting the LbL deposition. This work constitutes an important step toward the use of polyphenols as an antibacterial agent when incorporated in LbL films.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Collagen/chemistry , Tannins/pharmacology , Anti-Bacterial Agents/toxicity , Citric Acid/chemistry , Citric Acid/toxicity , Coated Materials, Biocompatible/toxicity , Collagen/toxicity , Drug Delivery Systems , Escherichia coli/drug effects , Fibroblasts/drug effects , Humans , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Tannins/toxicity
9.
Sci Rep ; 9(1): 2292, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783162

ABSTRACT

The lamellar-to-sponge phase transition of fluorescently labelled large unilamellar vesicles (LUVs) of the non-ionic surfactant triethylene glycol mono n-decyl ether (C10E3) was investigated in situ by confocal laser scanning microscopy (CLSM). Stable dispersions of micrometer-sized C10E3 LUVs were prepared at 20 °C and quickly heated at different temperatures close to the lamellar-to-sponge phase transition temperature. Phase transition of the strongly fluctuating individual vesicles into micrometre-sized sponge phase droplets was observed to occur via manyfold multilamellar morphologies with increasing membrane confinement through inter- and intra- lamellar fusion. The very low bending rigidity and lateral tension of the C10E3 bilayer were supported by quantitative image analysis of a stable fluctuating membrane using both flicker noise spectroscopy and spatial autocorrelation function.

10.
Chem Commun (Camb) ; 55(8): 1156-1159, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30632571

ABSTRACT

The diffusion of adequate peptide through an enzyme-embedded host hydrogel leads to the in situ start-up and growth of an interpenetrated fibrous network. Based on the enzyme-assisted self-assembly concept, both chemistry and mechanical features of the hybrid hydrogel can be tuned.


Subject(s)
Alkaline Phosphatase/metabolism , Diffusion , Hydrogels/metabolism , Peptides/metabolism , Hydrogels/chemistry , Molecular Structure , Particle Size , Peptides/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Surface Properties
11.
Biochim Biophys Acta Biomembr ; 1860(11): 2366-2373, 2018 11.
Article in English | MEDLINE | ID: mdl-29886032

ABSTRACT

The modification of lipid bilayer permeability is one of the most striking yet poorly understood physical transformations that follow photoinduced lipid oxidation. We have recently proposed that the increase of permeability of photooxidized 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers is controlled by the time required by the oxidized lipid species to diffuse and aggregate into pores. Here we further probe this mechanism by studying photosensitization of DOPC membranes by methylene blue (MB) and DO15, a more hydrophobic phenothiazinium photosensitizer, under different irradiation powers. Our results not only reveal the interplay between the production rate and the diffusion of the oxidized lipids, but highlight also the importance of photosensitizer localization in the kinetics of oxidized membrane permeability.


Subject(s)
Lipid Bilayers/metabolism , Phosphatidylcholines/chemistry , Photosensitizing Agents/metabolism , Diffusion , Lipid Bilayers/chemistry , Methylene Blue/chemistry , Methylene Blue/metabolism , Microscopy, Phase-Contrast , Oxidation-Reduction , Permeability , Photosensitizing Agents/chemistry
12.
Biophys J ; 114(9): 2165-2173, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742409

ABSTRACT

The properties of lipid bilayers in sucrose solutions have been intensely scrutinized over recent decades because of the importance of sugars in the field of biopreservation. However, a consensus has not yet been formed on the mechanisms of sugar-lipid interaction. Here, we present a study on the effect of sucrose on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers that combines calorimetry, spectral fluorimetry, and optical microscopy. Intriguingly, our results show a significant decrease in the transition enthalpy but only a minor shift in the transition temperature. Our observations can be quantitatively accounted for by a thermodynamic model that assumes partial delayed melting induced by sucrose adsorption at the membrane interface.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Sucrose/chemistry , Solutions , Thermodynamics , Transition Temperature
13.
Sci Rep ; 7: 43963, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262825

ABSTRACT

Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.


Subject(s)
Cell-Penetrating Peptides/metabolism , Membrane Lipids/metabolism , Lipid Bilayers/metabolism , Microscopy, Confocal , Protein Binding
14.
Langmuir ; 32(32): 8123-30, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27409245

ABSTRACT

Partially ordered stacks of phospholipid bilayers on a flat substrate can be obtained by the evaporation of a spread droplet of phospholipid-in-chloroform solution. When exposed to an aqueous buffer, numerous micrometric buds populate the bilayers, grow in size over minutes, and eventually detach, forming the so-called liposomes or vesicles. While observation of vesicle growth from a hydrated lipid film under an optical microscope suggests numerous events of vesicle fusion, there is little experimental evidence for discriminating between merging of connected buds, i.e., a shape transformation that does not imply bilayer fusion and real membrane fusion. Here, we use electroformation to grow giant unilamellar vesicles (GUVs) from a stack of lipids in a buffer containing either (i) nanometric liposomes or (ii) previously prepared GUVs. By combining different fluorescent labels of the lipids in the substrate and in the solution, and by performing a fluorescence analysis of the resulting GUVs, we clearly demonstrate that merging of bulges is the essential pathway for vesicle growth in electroformation.

15.
Colloids Surf B Biointerfaces ; 145: 576-585, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27281243

ABSTRACT

Ureases are metalloenzymes that catalyze the hydrolysis of urea to ammonia and carbon dioxide. Jack bean (Canavalia ensiformis) produces three isoforms of urease (Canatoxin, JBU and JBURE-II). Canatoxin and JBU display several biological properties independent of their ureolytic activity, such as neurotoxicity, exocytosis-inducing and pro-inflammatory effects, blood platelets activation, insecticidal and antifungal activities. The Canatoxin entomotoxic activity is mostly due to an internal peptide, named pepcanatox, released upon the hydrolysis of the protein by insect cathepsin-like digestive enzymes. Based on pepcanatox sequence, Jaburetox-2Ec was produced in Escherichia coli. JBU and its peptides were shown to permeabilize membranes through an ion channel-based mechanism. Here we studied the JBU and Jaburetox-2Ec interaction with platelet-like multilamellar liposomes (PML) using Dynamic Light Scattering and Small Angle X-ray Scattering techniques. We also analyzed the interaction of JBU with giant unilamellar vesicles (GUVs) using Fluorescence Microscopy. The interaction of vesicles with JBU led to a slight reduction of hydrodynamic radius, and caused an increase in the lamellar repeat distance of PML, suggesting a membrane disordering effect. In contrast, Jaburetox-2Ec decreased the lamellar repeat distance of PML membranes, while also diminishing their hydrodynamic radius. Fluorescence microscopy showed that the interaction of GUVs with JBU caused membrane perturbation with formation of tethers. In conclusion, JBU can interact with PML, probably by inserting its Jaburetox "domain" into the PML external membrane. Additionally, the interaction of Jaburetox-2Ec affects the vesicle's internal bilayers and hence causes more drastic changes in the PML membrane organization in comparison with JBU.


Subject(s)
Canavalia/enzymology , Liposomes/metabolism , Peptides/metabolism , Urease/metabolism , Dynamic Light Scattering , Microscopy, Fluorescence , Scattering, Small Angle , X-Ray Diffraction
16.
J Control Release ; 196: 87-95, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25307996

ABSTRACT

A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50 nm. The stability of cross-linked Pluronic micelles at 37 °C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer.


Subject(s)
Cell Survival/drug effects , Poloxamer/pharmacology , Animals , Blood Proteins/chemistry , Cross-Linking Reagents , Fluorescent Dyes , Hydrophobic and Hydrophilic Interactions , Mice , Micelles , NIH 3T3 Cells , Oxazines , Poloxamer/chemistry , Poloxamer/metabolism , Propylene Glycols
17.
Soft Matter ; 10(24): 4241-7, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24871383

ABSTRACT

Oxidation can intimately influence and structurally compromise the levels of biological self-assembly embodied by intracellular and plasma membranes. Lipid peroxidation, a natural metabolic outcome of life with oxygen under light, is also a salient oxidation reaction in photomedicine treatments. However, the effect of peroxidation on the fate of lipid membranes remains elusive. Here we use a new photosensitizer that anchors and disperses in the membrane to achieve spatial control of the oxidizing species. We find, surprisingly, that the integrity of unsaturated unilamellar vesicles is preserved even for fully oxidized membranes. Membrane survival allows for the quantification of the transformations of the peroxidized bilayers, providing key physical and chemical information to understand the effect of lipid oxidation on protein insertion and on other mechanisms of cell function. We anticipate that spatially controlled oxidation will emerge as a new powerful strategy for tuning and evaluating lipid membranes in biomimetic media under oxidative stress.


Subject(s)
Indoles/chemistry , Lipid Peroxidation , Photosensitizing Agents/pharmacology , Porphyrins/chemistry , Unilamellar Liposomes/chemistry , Absorption, Radiation , Indoles/chemical synthesis , Photosensitizing Agents/radiation effects , Porphyrins/chemical synthesis , Ultraviolet Rays
18.
Biophys J ; 105(1): 154-64, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23823234

ABSTRACT

Giant unilamellar vesicles or GUVs are systems of choice as biomimetic models of cellular membranes. Although a variety of procedures exist for making single walled vesicles of tens of microns in size, the range of lipid compositions that can be used to grow GUVs by the conventional methods is quite limited, and many of the available methods involve energy input that can damage the lipids or other molecules present in the growing solution for embedment in the membrane or in the vesicle interior. Here, we show that a wide variety of lipids or lipid mixtures can grow into GUVs by swelling lipid precursor films on top of a dried polyvinyl alcohol gel surface in a swelling buffer that can contain diverse biorelevant molecules. Moreover, we show that the encapsulation potential of this method can be enhanced by combining polyvinyl alcohol-mediated growth with inverse-phase methods, which allow (bio)molecule complexation with the lipids.


Subject(s)
Polyvinyl Alcohol/chemistry , Unilamellar Liposomes/chemistry , Buffers , Cardiolipins/chemistry , Gels , Hydrophobic and Hydrophilic Interactions , Phosphatidylcholines/chemistry , Temperature
19.
Biochim Biophys Acta ; 1818(3): 666-72, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22172805

ABSTRACT

Using giant unilamellar vesicles (GUVs) made from POPC, DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance.


Subject(s)
Light , Lipid Peroxidation/radiation effects , Membrane Lipids/chemistry , Membranes, Artificial , Phase Transition/radiation effects , Photochemical Processes/radiation effects
20.
Phys Rev Lett ; 105(8): 088101, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20868131

ABSTRACT

Stained end-grafted DNA molecules about 20 µm long are scraped away and stretched out by the spreading front of a bioadhesive vesicle. Tethered biotin ligands bind the vesicle bilayer to a streptavidin substrate, stapling the DNAs into frozen confinement paths. Image analysis of the stapled DNA gives access, within optical resolution, to the local stretching values of individual DNA molecules swept by the spreading front, and provides evidence of self-entanglements.


Subject(s)
Adhesives/chemistry , Biomimetic Materials/chemistry , DNA/chemistry , Friction , Unilamellar Liposomes/chemistry , Animals , Imaging, Three-Dimensional , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...