Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(32): 10988-11001, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32554807

ABSTRACT

The development of the dendritic arbor in pyramidal neurons is critical for neural circuit function. Here, we uncovered a pathway in which δ-catenin, a component of the cadherin-catenin cell adhesion complex, promotes coordination of growth among individual dendrites and engages the autophagy mechanism to sculpt the developing dendritic arbor. Using a rat primary neuron model, time-lapse imaging, immunohistochemistry, and confocal microscopy, we found that apical and basolateral dendrites are coordinately sculpted during development. Loss or knockdown of δ-catenin uncoupled this coordination, leading to retraction of the apical dendrite without altering basolateral dendrite dynamics. Autophagy is a key cellular pathway that allows degradation of cellular components. We observed that the impairment of the dendritic arbor resulting from δ-catenin knockdown could be reversed by knockdown of autophagy-related 7 (ATG7), a component of the autophagy machinery. We propose that δ-catenin regulates the dendritic arbor by coordinating the dynamics of individual dendrites and that the autophagy mechanism may be leveraged by δ-catenin and other effectors to sculpt the developing dendritic arbor. Our findings have implications for the management of neurological disorders, such as autism and intellectual disability, that are characterized by dendritic aberrations.


Subject(s)
Autophagy , Catenins/metabolism , Dendritic Cells/metabolism , Animals , Autophagy-Related Protein 7/genetics , Catenins/genetics , Cells, Cultured , Gene Knockdown Techniques , Hippocampus/cytology , Hippocampus/metabolism , Mice , Pyramidal Cells/metabolism , Rats , Delta Catenin
2.
Mol Neurobiol ; 56(6): 4151-4162, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30288694

ABSTRACT

CDKL5 disorder is a devastating neurodevelopmental disorder associated with epilepsy, developmental retardation, autism, and related phenotypes. Mutations in the CDKL5 gene, encoding CDKL5, have been identified in this disorder. CDKL5 is a protein with homology to the serine-threonine kinases and incompletely characterized function. We generated and validated a murine model bearing a floxed allele of CDKL5 and polyclonal antibodies to CDKL5. CDKL5 is well expressed in the cortex, hippocampus, and striatum, localized to synaptosomes and nuclei and developmentally regulated in the hippocampus. Using Cre-mediated mechanisms, we deleted CDKL5 from excitatory CaMKIIα-positive neurons or inhibitory GABAergic neurons. Our data indicate that loss of CDKL5 in excitatory neurons of the cortex or inhibitory neurons of the striatum differentially alters expression of some components of the mechanistic target of rapamycin (mTOR) signaling pathway. Further loss of CDKL5 in excitatory neurons of the cortex or inhibitory neurons of the striatum leads to alterations in levels of synaptic markers in a neuron-type specific manner. Taken together, these data support a model in which loss of CDKL5 alters mTOR signaling and synaptic compositions in a neuron-type specific manner and suggest that CDKL5 may have distinct functional roles related to cellular signaling in excitatory and inhibitory neurons. Thus, these studies provide new insights into the biology of CDKL5 and suggest that the molecular pathology in CDKL5 disorder may have distinct neuron-type specific origins and effects.


Subject(s)
Biomarkers/metabolism , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Synapses/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , GABAergic Neurons/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Neural Inhibition , Organ Specificity , Rats , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...