Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14293, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906942

ABSTRACT

As natural landscapes are modified and converted into simplified agricultural landscapes, the community composition and interactions of organisms persisting in these modified landscapes are altered. While many studies examine the consequences of these changing interactions for crops, few have evaluated the effects on wild plants. Here, we examine how pollinator and herbivore interactions affect reproductive success for wild resident and phytometer plants at sites along a landscape gradient ranging from natural to highly simplified. We tested the direct and indirect effects of landscape composition on plant traits and reproduction mediated by insect interactions. For phytometer plants exposed to herbivores, we found that greater landscape complexity corresponded with elevated herbivore damage, which reduced total flower production but increased individual flower size. Though larger flowers increased pollination, the reduction in flowers ultimately reduced plant reproductive success. Herbivory was also higher in complex landscapes for resident plants, but overall damage was low and therefore did not have a cascading effect on floral display and reproduction. This work highlights that landscape composition directly affects patterns of herbivory with cascading effects on pollination and wild plant reproduction. Further, the absence of an effect on reproduction for resident plants suggests that they may be adapted to their local insect community.


Subject(s)
Flowers , Herbivory , Pollination , Reproduction , Flowers/physiology , Pollination/physiology , Animals , Reproduction/physiology , Agriculture/methods , Insecta/physiology , Crops, Agricultural
2.
PLoS One ; 18(5): e0286050, 2023.
Article in English | MEDLINE | ID: mdl-37256895

ABSTRACT

The conversion of natural landscapes to agriculture is a leading cause of biodiversity loss worldwide. While many studies examine how landscape modification affects species diversity, a trait-based approach can provide new insights into species responses to environmental change. Wild plants persisting in heavily modified landscapes provide a unique opportunity to examine species' responses to land use change. Trait expression within a community plays an important role in structuring species interactions, highlighting the potential implications of landscape mediated trait changes on ecosystem functioning. Here we test the effect of increasing agricultural landscape modification on defensive and reproductive traits in three commonly occurring Brassicaceae species to evaluate plant responses to landscape change. We collected seeds from populations at spatially separated sites with variation in surrounding agricultural land cover and grew them in a greenhouse common garden, measuring defensive traits through an herbivore no-choice bioassay as well as reproductive traits such as flower size and seed set. In two of the three species, plants originating from agriculturally dominant landscapes expressed a consistent reduction in flower size and herbivore leaf consumption. One species also showed reduced fitness associated with increasingly agricultural landscapes. These findings demonstrate that wild plants are responding to landscape modification, suggesting that the conversion of natural landscapes to agriculture has consequences for wild plant evolution.


Subject(s)
Ecosystem , Herbivory , Plants , Biodiversity , Agriculture
3.
Evolution ; 76(7): 1652-1653, 2022 07.
Article in English | MEDLINE | ID: mdl-35661154

ABSTRACT

The sharing of pollinators between closely related plant species may be detrimental to plant reproductive success. This predicts that natural selection should favor divergent traits that facilitate coexistence by niche partitioning. Testing this hypothesis in mixed versus pure sites of two pollinator-sharing orchid species, Joffard et al. found that one species had a shift in the timing of floral scent emission that did not match the shift in pollinator visitation. This raises further questions about the mechanisms driving floral trait evolution.


Subject(s)
Orchidaceae , Pollination , Flowers , Odorants , Reproduction
4.
Front Plant Sci ; 11: 592881, 2020.
Article in English | MEDLINE | ID: mdl-33519849

ABSTRACT

In the Anthropocene, more than three quarters of ice-free land has experienced some form of human-driven habitat modification, with agriculture dominating 40% of the Earth's surface. This land use change alters the quality, availability, and configuration of habitat resources, affecting the community composition of plants and insects, as well as their interactions with each other. Landscapes dominated by agriculture are known to support a lower abundance and diversity of pollinators and frequently larger populations of key herbivore pests. In turn, insect communities subsidized by agriculture may spill into remaining natural habitats with consequences for wild plants persisting in (semi) natural habitats. Adaptive responses by wild plants may allow them to persist in highly modified landscapes; yet how landscape-mediated variation in insect communities affects wild plant traits related to reproduction and defense remains largely unknown. We synthesize the evidence for plant trait changes across land use gradients and propose potential mechanisms by which landscape-mediated changes in insect communities may be driving these trait changes. Further, we present results from a common garden experiment on three wild Brassica species demonstrating variation in both defensive and reproductive traits along an agricultural land use gradient. Our framework illustrates the potential for plant adaptation under land use change and predicts how defense and reproduction trait expression may shift in low diversity landscapes. We highlight areas of future research into plant population and community effects of land use change.

5.
Biol Lett ; 14(5)2018 05.
Article in English | MEDLINE | ID: mdl-29743264

ABSTRACT

Developed countries around the world are criss-crossed with vast networks of roadways. Conservationists have recently focused attention on roadsides as possible locations for establishing pollinator habitat, with the monarch butterfly (Danaus plexippus) featuring prominently in such discussions. However, roadsides are inherently loud, which could negatively affect developing larvae. We conducted a series of experiments testing if simulated highway noise stresses monarch larvae, which we gauged by non-destructive monitoring of heart rates. In two replicated experiments, larvae exposed for 2 h experienced a significant increase in heart rate (16 and 17% elevation), indicating they perceive traffic noise as a stressor. Meanwhile, experiments exposing larvae for either 7 or 12 days to continuous traffic noise both showed no heart rate elevation at the end of larval development, suggesting chronic noise exposure leads to habituation or desensitization. Habituation to stress as larvae may impair reactions to real-world stressors as adults, which could be problematic for a butterfly that undertakes an annual two-month migration that is fraught with dangers. More generally, these results could have far-reaching implications for the billions of insects worldwide that develop near roadways, and argue that further study is needed before promoting roadside habitat for butterfly conservation.


Subject(s)
Butterflies/physiology , Heart Rate/physiology , Noise, Transportation/adverse effects , Animals , Butterflies/growth & development , Ecosystem , Habituation, Psychophysiologic , Larva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...