Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37989983

ABSTRACT

microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously found higher miR-29a levels in the human brain to be associated with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5×FAD AD mouse model. To test this, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels and improved measures of memory in the Morris water maze and fear condition paradigms when delivered to the hippocampi of 5×FAD and WT mice. miR-29a sponge significantly reduced hippocampal beta-amyloid deposition in 5×FAD mice and lowered astrocyte and microglia activation in both 5×FAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5×FAD mice, respectively. These data indicate that lower miR-29a levels mitigate cognitive decline, making miR-29a and its target genes worth further evaluation as targets to mitigate Alzheimer's disease (AD).

2.
Res Sq ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645711

ABSTRACT

microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously associated higher miR-29a levels in human brain with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5xFAD AD mouse model. To test this hypothesis, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels, and improved measures of memory in the Morris water maze and fear condition paradigms when sponge delivered to hippocampi of 5XFAD and WT mice. miR-29a sponge expression significantly reduced hippocampal beta-amyloid deposition in 5XFAD mice and lowered astrocyte and microglia activation in both 5XFAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5XFAD mice, respectively. These data indicate that miR-29a promotes AD-like neuropathology and negatively regulates cognition, making it and its target genes attractive therapeutic targets for the treatment of neurodegenerative disease.

3.
Neurobiol Dis ; 185: 106257, 2023 09.
Article in English | MEDLINE | ID: mdl-37562656

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder influenced by a complex interplay of environmental, epigenetic, and genetic factors. DNA methylation (5mC) and hydroxymethylation (5hmC) are DNA modifications that serve as tissue-specific and temporal regulators of gene expression. TET family enzymes dynamically regulate these epigenetic modifications in response to environmental conditions, connecting environmental factors with gene expression. Previous epigenetic studies have identified 5mC and 5hmC changes associated with AD. In this study, we performed targeted resequencing of TET1 on a cohort of early-onset AD (EOAD) and control samples. Through gene-wise burden analysis, we observed significant enrichment of rare TET1 variants associated with AD (p = 0.04). We also profiled 5hmC in human postmortem brain tissues from AD and control groups. Our analysis identified differentially hydroxymethylated regions (DhMRs) in key genes responsible for regulating the methylome: TET3, DNMT3L, DNMT3A, and MECP2. To further investigate the role of Tet1 in AD pathogenesis, we used the 5xFAD mouse model with a Tet1 KO allele to examine how Tet1 loss influences AD pathogenesis. We observed significant changes in neuropathology, 5hmC, and RNA expression associated with Tet1 loss, while the behavioral alterations were not significant. The loss of Tet1 significantly increased amyloid plaque burden in the 5xFAD mouse (p = 0.044) and lead to a non-significant trend towards exacerbated AD-associated stress response in 5xFAD mice. At the molecular level, we found significant DhMRs enriched in genes involved in pathways responsible for neuronal projection organization, dendritic spine development and organization, and myelin assembly. RNA-Seq analysis revealed a significant increase in the expression of AD-associated genes such as Mpeg1, Ctsd, and Trem2. In conclusion, our results suggest that TET enzymes, particularly TET1, which regulate the methylome, may contribute to AD pathogenesis, as the loss of TET function increases AD-associated pathology.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/metabolism , 5-Methylcytosine , Epigenesis, Genetic , DNA Methylation , Transcription Factors/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
4.
J Biol Chem ; 296: 100024, 2021.
Article in English | MEDLINE | ID: mdl-33410399

ABSTRACT

The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.


Subject(s)
Cell Nucleus/metabolism , Hippocampus/metabolism , Long-Term Potentiation , Mutation , Neurons/metabolism , RGS Proteins/genetics , Animals , Hippocampus/cytology , Hippocampus/physiology , Humans , Karyopherins/metabolism , Mice , Neuronal Plasticity , Protein Transport , RGS Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Spatial Learning , Exportin 1 Protein
5.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Article in English | MEDLINE | ID: mdl-30976085

ABSTRACT

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Schizophrenia , Animals , Child , Chromosome Deletion , Clustered Regularly Interspaced Short Palindromic Repeats , Developmental Disabilities/genetics , Disease Models, Animal , Humans , Intellectual Disability/genetics , Mice , Mice, Inbred C57BL , Phenotype , Schizophrenia/genetics
6.
J Am Assoc Lab Anim Sci ; 59(6): 695-702, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32878682

ABSTRACT

Corncob is a common bedding material used in laboratory rodents, but little is known about differences in the effects of the 2 available sizes on rodent models and health. This study compared the effects of these 2 corncob bedding sizes on cage ammonia levels, behavior, and respiratory pathology in mice. We hypothesized that the beddings would not differ significantly in their effects on these parameters. Two strains of male mice (C57BL/6 and 129S1/Svlm) were housed in static, filter-top cages containing 1 of the 2 bedding types for the duration of the study (12 wk). Intracage ammonia was measured during 1 wk of the study on days 0, 3, 5, and 7. Behavior was evaluated by using circadian rhythm, open field, and Morris water-maze tests. Animals were euthanized with injectable euthanasia solution to collect respiratory and ocular tissues for histopathologic lesion scoring. Animals that were euthanized immediately upon arrival from the vendor served as negative controls. Bedding size did not significantly affect behavior or ammonia levels. Average intracage ammonia levels on day 7 were 525 ppm for 1/4-in. bedding and 533 ppm for 1/8-in. bedding. Regardless of the bedding size, lesions noted in both strains of mice were of similar incidence and severity, were limited to the nose, and consisted of minimal to mild suppurative rhinitis. The eyes, trachea, and lungs were not affected. In conclusion, 1/4-in. and 1/8-in. corncob beddings have comparable effects on cage ammonia levels and the behavior and respiratory pathology in male mice of the strains tested.


Subject(s)
Ammonia/toxicity , Behavior, Animal/drug effects , Housing, Animal , Mice, 129 Strain , Mice, Inbred C57BL , Animals , Male , Maze Learning , Mice , Nose/pathology , Species Specificity , Zea mays
7.
Genes Brain Behav ; 19(5): e12634, 2020 06.
Article in English | MEDLINE | ID: mdl-31898856

ABSTRACT

A subset of people exposed to a traumatic event develops post-traumatic stress disorder (PTSD), which is associated with dysregulated fear behavior. Genetic variation in SLC18A2, the gene that encodes vesicular monoamine transporter 2 (VMAT2), has been reported to affect risk for the development of PTSD in humans. Here, we use transgenic mice that express either 5% (VMAT2-LO mice) or 200% (VMAT2-HI mice) of wild-type levels of VMAT2 protein. We report that VMAT2-LO mice have reduced VMAT2 protein in the hippocampus and amygdala, impaired monoaminergic vesicular storage capacity in both the striatum and frontal cortex, decreased monoamine metabolite abundance and a greatly reduced capacity to release dopamine upon stimulation. Furthermore, VMAT2-LO mice showed exaggerated cued and contextual fear expression, altered fear habituation, inability to discriminate threat from safety cues, altered startle response compared with wild-type mice and an anxiogenic-like phenotype, but displayed no deficits in social function. By contrast, VMAT2-HI mice exhibited increased VMAT2 protein throughout the brain, higher vesicular storage capacity and greater dopamine release upon stimulation compared with wild-type controls. Behaviorally, VMAT2-HI mice were similar to wild-type mice in most assays, with some evidence of a reduced anxiety-like responses. Together, these data show that presynaptic monoamine function mediates PTSD-like outcomes in our mouse model, and suggest a causal link between reduced VMAT2 expression and fear behavior, consistent with the correlational relationship between VMAT2 genotype and PTSD risk in humans. Targeting this system is a potential strategy for the development of pharmacotherapies for disorders like PTSD.


Subject(s)
Fear , Stress Disorders, Post-Traumatic/genetics , Vesicular Monoamine Transport Proteins/genetics , Amygdala/metabolism , Amygdala/physiology , Animals , Cues , Dopamine/metabolism , Female , Habituation, Psychophysiologic , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Social Behavior , Vesicular Monoamine Transport Proteins/metabolism
8.
J Inherit Metab Dis ; 43(3): 518-528, 2020 05.
Article in English | MEDLINE | ID: mdl-31845342

ABSTRACT

Classic galactosemia (CG) is a potentially lethal inborn error of metabolism, if untreated, that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the middle enzyme of the Leloir pathway of galactose metabolism. While newborn screening and rapid dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms of CG, by mid-childhood, most treated patients experience significant complications. The mechanisms underlying these long-term deficits remain unclear. Here we introduce a new GALT-null rat model of CG and demonstrate that these rats display cataracts, cognitive, motor, and growth phenotypes reminiscent of patients outcomes. We further apply the GALT-null rats to test how well blood biomarkers, typically followed in patients, reflect metabolic perturbations in other, more relevant tissues. Our results document that the relative levels of galactose metabolites seen in GALT deficiency differ widely by tissue and age, and that red blood cell Gal-1P, the marker most commonly followed in patients, shows no significant association with Gal-1P in other tissues. The work reported here establishes our outbred GALT-null rats as an effective model for at least four complications characteristic of CG, and sets the stage for future studies addressing mechanism and testing the efficacy of novel candidate interventions.


Subject(s)
Disease Models, Animal , Galactose/metabolism , Galactosemias/metabolism , Galactosephosphates/metabolism , Animals , Animals, Newborn , Female , Galactosemias/genetics , Male , Phenotype , Rats , Rats, Sprague-Dawley , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
9.
J Neurosci ; 38(1): 74-92, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29133432

ABSTRACT

The brainstem locus coeruleus (LC) supplies norepinephrine to the forebrain and degenerates in Alzheimer's disease (AD). Loss of LC neurons is correlated with increased severity of other AD hallmarks, including ß-amyloid (Aß) plaques, tau neurofibrillary tangles, and cognitive deficits, suggesting that it contributes to the disease progression. Lesions of the LC in amyloid-based transgenic mouse models of AD exacerbate Aß pathology, neuroinflammation, and cognitive deficits, but it is unknown how the loss of LC neurons affects tau-mediated pathology or behavioral abnormalities. Here we investigate the impact of LC degeneration in a mouse model of tauopathy by lesioning the LC of male and female P301S tau transgenic mice with the neurotoxin N-(2-chloroethyl)-N-ethyl-bromobenzylamine (DSP-4) starting at 2 months of age. By 6 months, deficits in hippocampal-dependent spatial (Morris water maze) and associative (contextual fear conditioning) memory were observed in lesioned P301S mice while performance remained intact in all other genotype and treatment groups, indicating that tau and LC degeneration act synergistically to impair cognition. By 10 months, the hippocampal neuroinflammation and neurodegeneration typically observed in unlesioned P301S mice were exacerbated by DSP-4, and mortality was also accelerated. These DSP-4-induced changes were accompanied by only a mild aggravation of tau pathology, suggesting that increased tau burden cannot fully account for the effects of LC degeneration. Combined, these experiments demonstrate that loss of LC noradrenergic neurons exacerbates multiple phenotypes caused by pathogenic tau, and provides complementary data to highlight the dual role LC degeneration has on both tau and Aß pathologies in AD.SIGNIFICANCE STATEMENT Elucidating the mechanisms underlying AD is crucial to developing effective diagnostics and therapeutics. The degeneration of the LC and loss of noradrenergic transmission have been recognized as ubiquitous events in AD pathology, and previous studies demonstrated that LC lesions exacerbate pathology and cognitive deficits in amyloid-based mouse models. Here, we reveal a complementary role of LC degeneration on tau-mediated aspects of the disease by using selective lesions of the LC and the noradrenergic system to demonstrate an exacerbation of cognitive deficits, neuroinflammation, neurodegeneration in a transgenic mouse model of tauopathy. Our data support an integral role for the LC in modulating the severity of both canonical AD-associated pathologies, as well as the detrimental consequences of LC degeneration during disease progression.


Subject(s)
Cognition Disorders/pathology , Cognition Disorders/psychology , Genes, Lethal/genetics , Locus Coeruleus/pathology , Tauopathies/genetics , Tauopathies/pathology , tau Proteins/genetics , Animals , Benzylamines/toxicity , Conditioning, Psychological/drug effects , Fear/drug effects , Female , Hippocampus/pathology , Inflammation/pathology , Male , Maze Learning/drug effects , Memory Disorders/pathology , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Norepinephrine/metabolism , Tauopathies/psychology
10.
Neurobiol Dis ; 106: 181-190, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28688853

ABSTRACT

Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.


Subject(s)
Genetic Predisposition to Disease , Myoclonic Epilepsies, Progressive/metabolism , Receptors, G-Protein-Coupled/deficiency , Seizures/metabolism , Adolescent , Animals , Brain/physiopathology , Child , Female , Genetic Variation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoclonic Epilepsies, Progressive/genetics , NIH 3T3 Cells , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Seizures/genetics , Young Adult
11.
Neuropharmacology ; 119: 134-140, 2017 06.
Article in English | MEDLINE | ID: mdl-28392265

ABSTRACT

Drug-primed reinstatement of cocaine seeking in rats is thought to reflect relapse-like behavior and is mediated by the integration of signals from mesocorticolimbic dopaminergic projections and corticostriatal glutamatergic innervation. Cocaine-primed reinstatement can also be attenuated by systemic administration of dopamine ß-hydroxylase (DBH) inhibitors, which prevent norepinephrine (NE) synthesis, or by α1-adrenergic receptor (α1AR) antagonists, indicating functional modulation by the noradrenergic system. In the present study, we sought to further discern the role of NE in cocaine-seeking behavior by determining whether α1AR activation can induce reinstatement on its own or is sufficient to permit cocaine-primed reinstatement in the absence of all other AR signaling, and identifying the neuroanatomical substrate within the mesocorticolimbic reward system harboring the critical α1ARs. We found that while intracerebroventricular infusion of the α1AR agonist phenylephrine did not induce reinstatement on its own, it did overcome the blockade of cocaine-primed reinstatement by the DBH inhibitor nepicastat. Furthermore, administration of the α1AR antagonist terazosin in the medial prefrontal cortex (mPFC), but not the ventral tegmental area (VTA) or nucleus accumbens (NAc) shell, attenuated cocaine-primed reinstatement. Combined, these data indicate that α1AR activation in the mPFC is required for cocaine-primed reinstatement, and suggest that α1AR antagonists merit further investigation as pharmacotherapies for cocaine dependence.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Norepinephrine/pharmacology , Prefrontal Cortex/drug effects , Receptors, Adrenergic, alpha-1/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Cocaine-Related Disorders/drug therapy , Conditioning, Operant/drug effects , Enzyme Inhibitors/pharmacology , Extinction, Psychological/drug effects , Food , Male , Nucleus Accumbens/drug effects , Prazosin/analogs & derivatives , Prazosin/pharmacology , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Self Administration , Ventral Tegmental Area/drug effects
12.
ACS Chem Neurosci ; 8(6): 1177-1187, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28230352

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and currently no disease-modifying therapy is available to slow or prevent AD, underscoring the urgent need for neuroprotective therapies. Selective M1 muscarinic acetylcholine receptor (mAChR) activation is an attractive mechanism for AD therapy since M1 mediates key effects on memory, cognition, and behavior and has potential for disease-modifying effects on Aß formation and tau phosphorylation. To validate M1 as a neuroprotective treatment target for AD, the M1-selective agonist, VU0364572, was chronically dosed to 5XFAD mice from a young age preceding Aß pathology (2 months) to an age where these mice are known to display memory impairments (6 months). Chronic M1 activation prevented mice from becoming memory-impaired, as measured by Morris water maze (MWM) testing at 6 months of age. Additionally, M1 activation significantly reduced levels of soluble and insoluble Aß40,42 in the cortex and hippocampus of these animals, as measured by ELISA and immunohistochemistry. Moreover, soluble hippocampal Aß42 levels were strongly correlated with MWM memory impairments and M1 activation with VU0364572 abolished this correlation. Finally, VU0364572 significantly decreased oligomeric (oAß) levels in the cortex, suggesting one mechanism whereby VU0364572 may be exerting its neuroprotective effects is by reducing the available oAß pool in the brain. These findings suggest that chronic M1 activation has neuroprotective potential for preventing memory impairments and reducing neuropathology in AD. M1 activation therefore represents a promising avenue for preventative treatment, as well as a promising opportunity to combine symptomatic and disease-modifying effects for early AD treatment.


Subject(s)
Alzheimer Disease/pathology , Benzamides/pharmacology , Biphenyl Compounds/pharmacology , Brain/drug effects , Receptor, Muscarinic M1/drug effects , Animals , Brain/pathology , Maze Learning/drug effects , Mice , Mice, Transgenic , Neuroprotective Agents/pharmacology , Receptor, Muscarinic M1/agonists
13.
J Neurosci Res ; 95(5): 1144-1160, 2017 05.
Article in English | MEDLINE | ID: mdl-27859486

ABSTRACT

Recent studies show that the complex genetic architecture of schizophrenia (SZ) is driven in part by polygenic components, or the cumulative effect of variants of small effect in many genes, as well as rare single-locus variants with large effect sizes. Here we discuss genetic aberrations known as copy number variants (CNVs), which fall in the latter category and are associated with a high risk for SZ and other neuropsychiatric disorders. We briefly review recurrent CNVs associated with SZ, and then highlight one CNV in particular, a recurrent 1.6-Mb deletion on chromosome 3q29, which is estimated to confer a 40-fold increased risk for SZ. Additionally, we describe the use of genetic mouse models, behavioral tools, and patient-derived induced pluripotent stem cells as a means to study CNVs in the hope of gaining mechanistic insight into their respective disorders. Taken together, the genomic data connecting CNVs with a multitude of human neuropsychiatric disease, our current technical ability to model such chromosomal anomalies in mouse, and the existence of precise behavioral measures of endophenotypes argue that the time is ripe for systematic dissection of the genetic mechanisms underlying such disease. © 2016 Wiley Periodicals, Inc.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Schizophrenia/genetics , Animals , Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Developmental Disabilities/genetics , Humans
14.
PLoS One ; 11(5): e0154864, 2016.
Article in English | MEDLINE | ID: mdl-27148966

ABSTRACT

Dopamine ß-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a "C" or a "T" at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh deficiency phenotypes, but did not reveal an impact of the rs11115 variant on DBH expression in mice.


Subject(s)
Chromosomes, Artificial, Bacterial/physiology , Dopamine beta-Hydroxylase/metabolism , Gene Transfer Techniques , Adrenal Glands/chemistry , Adrenergic Neurons/metabolism , Animals , Brain Chemistry , Chromosomes, Artificial, Bacterial/genetics , Dopamine/analysis , Dopamine beta-Hydroxylase/genetics , Dopamine beta-Hydroxylase/physiology , Humans , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Motor Activity , Myocardium/chemistry , Norepinephrine/analysis , Real-Time Polymerase Chain Reaction
15.
Addict Biol ; 20(4): 701-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25053279

ABSTRACT

Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.


Subject(s)
Cocaine/pharmacology , Coumarins/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Frontal Lobe/metabolism , Animals , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/prevention & control , Conditioning, Operant , Dopamine/metabolism , Drug-Seeking Behavior/drug effects , Eating/drug effects , Extinction, Psychological/drug effects , Galanin/antagonists & inhibitors , Male , Microdialysis , Motor Activity/drug effects , Nucleus Accumbens/metabolism , Rats, Sprague-Dawley , Recurrence , Reinforcement, Psychology , Self Administration
16.
Psychopharmacology (Berl) ; 232(8): 1395-403, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25358851

ABSTRACT

RATIONALE: Voluntary aerobic exercise has shown promise as a treatment for substance abuse, reducing relapse in cocaine-dependent people. Wheel running also attenuates drug-primed and cue-induced reinstatement of cocaine seeking in rats, an animal model of relapse. However, in most of these studies, wheel access was provided throughout cocaine self-administration and/or extinction and had effects on several parameters of drug seeking. Moreover, the effects of exercise on footshock stress-induced reinstatement have not been investigated. OBJECTIVES: The purposes of this study were to isolate and specifically examine the protective effect of exercise on relapse-like behavior elicited by a drug prime or stress. METHODS: Rats were trained to self-administer cocaine at a stable level, followed by extinction training. Once extinction criteria were met, rats were split into exercise (24 h, continuous access to running wheel) and sedentary groups for 3 weeks, after which, drug-seeking behavior was assessed following a cocaine prime or footshock. We also measured galanin messenger RNA (mRNA) in the locus coeruleus and A2 noradrenergic nucleus. RESULTS: Exercising rats ran ∼4-6 km/day, comparable to levels previously reported for rats without a history of cocaine self-administration. Post-extinction exercise significantly attenuated cocaine-primed, but not footshock stress-induced, reinstatement of cocaine seeking, and increased galanin mRNA expression in the LC but not A2. CONCLUSION: These results indicate that chronic wheel running can attenuate some forms of reinstatement, even when initiated after the cessation of cocaine self-administration, supporting the idea that voluntary exercise programs may help maintain abstinence in clinical populations.


Subject(s)
Behavior, Addictive/prevention & control , Behavior, Addictive/psychology , Cocaine/administration & dosage , Extinction, Psychological , Physical Conditioning, Animal/psychology , Stress, Psychological/psychology , Animals , Cocaine-Related Disorders/prevention & control , Cocaine-Related Disorders/psychology , Extinction, Psychological/physiology , Male , Motor Activity/drug effects , Motor Activity/physiology , Physical Conditioning, Animal/physiology , Rats , Rats, Sprague-Dawley , Self Administration , Stress, Psychological/complications
17.
Neuropsychopharmacology ; 39(3): 638-50, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24022672

ABSTRACT

Synaptic loss in the brain correlates well with disease severity in Alzheimer disease (AD). Deficits in brain-derived neurotrophic factor/tropomyosin-receptor-kinase B (TrkB) signaling contribute to the synaptic dysfunction of AD. We have recently identified 7,8-dihydroxyflavone (7,8-DHF) as a potent TrkB agonist that displays therapeutic efficacy toward various neurological diseases. Here we tested the effect of 7,8-DHF on synaptic function in an AD model both in vitro and in vivo. 7,8-DHF protected primary neurons from Aß-induced toxicity and promoted dendrite branching and synaptogenesis. Chronic oral administration of 7,8-DHF activated TrkB signaling and prevented Aß deposition in transgenic mice that coexpress five familial Alzheimer's disease mutations (5XFAD mice). Moreover, 7,8-DHF inhibited the loss of hippocampal synapses, restored synapse number and synaptic plasticity, and prevented memory deficits. These results suggest that 7,8-DHF represents a novel oral bioactive therapeutic agent for treating AD.


Subject(s)
Alzheimer Disease , Antipsychotic Agents/therapeutic use , Apoptosis/drug effects , Flavones/therapeutic use , Memory Disorders/etiology , Memory Disorders/prevention & control , Synapses/pathology , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Female , Hippocampus/pathology , Humans , In Vitro Techniques , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Neurons/drug effects , Neurons/pathology , Neurons/ultrastructure , Plaque, Amyloid/pathology , Synapses/drug effects
18.
Neuropsychopharmacology ; 39(5): 1093-101, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24173499

ABSTRACT

Neurokinin-1 receptors (NK1Rs) have been shown to mediate alcohol and opiate, but not cocaine reward in rodents. We recently reported that NK1R antagonism also blocks stress-induced reinstatement of alcohol seeking in rats, but it is presently unknown whether these antirelapse properties extend to other drug classes. Although some work has suggested that intracranial substance P (SP) infusion reinstates cocaine seeking following extinction, no studies have indicated a direct role for the NK1R in reinstatement of cocaine seeking. Here, we explored the effect of the NK1R antagonist L822429 on yohimbine-induced reinstatement of alcohol or cocaine seeking in Long-Evans rats. Consistent with our previous findings with footshock-induced reinstatement of alcohol seeking in Wistar rats, we found that L822429 attenuates yohimbine-induced reinstatement of alcohol seeking, but does not affect baseline alcohol self-administration. We observed a similar suppression of yohimbine-induced reinstatement of cocaine seeking by L822429, and found that Long-Evans rats exhibit greater sensitivity to NK1R antagonism than Wistar rats. Accordingly, Long-Evans rats exhibit differences in the expression of NK1Rs in some subcortical brain regions. Combined, our findings suggest that while NK1R antagonism differentially influences alcohol- and cocaine-related behavior, this receptor mediates stress-induced seeking of both drugs.


Subject(s)
Alcohol-Related Disorders/drug therapy , Behavior, Addictive/drug therapy , Cocaine-Related Disorders/drug therapy , Neurokinin-1 Receptor Antagonists/pharmacology , Piperidines/pharmacology , Stress, Psychological/complications , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Alcohol-Related Disorders/etiology , Alcohol-Related Disorders/metabolism , Animals , Behavior, Addictive/chemically induced , Behavior, Addictive/etiology , Behavior, Addictive/metabolism , Brain/metabolism , Central Nervous System Depressants/administration & dosage , Central Nervous System Depressants/pharmacology , Cocaine/administration & dosage , Cocaine/pharmacology , Cocaine-Related Disorders/etiology , Cocaine-Related Disorders/metabolism , Dopamine Uptake Inhibitors/administration & dosage , Dopamine Uptake Inhibitors/pharmacology , Ethanol/administration & dosage , Ethanol/pharmacology , Male , Rats , Rats, Long-Evans , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Recurrence , Saccharin/administration & dosage , Species Specificity , Stress, Psychological/chemically induced , Stress, Psychological/metabolism , Yohimbine/pharmacology
19.
Psychopharmacology (Berl) ; 228(2): 263-70, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23494229

ABSTRACT

RATIONALE: High doses of cocaine can elicit seizures in humans and in laboratory animals. Several mechanisms have been proposed for the induction of seizures by cocaine, including enhanced monoaminergic signaling, blockade of ion channels, and alterations in GABA and glutamate transmission. Mutations in the SCN1A gene, which encodes the central nervous system (CNS) voltage-gated sodium channel (VGSC) Nav1.1, are responsible for several human epilepsy disorders including Dravet syndrome and genetic (generalized) epilepsy with febrile seizures plus (GEFS+). Mice heterozygous for the R1648H GEFS+ mutation (RH mice) exhibit reduced interneuron excitability, spontaneous seizures, and lower thresholds to flurothyl- and hyperthermia-induced seizures. However, it is unknown whether impaired CNS VGSC function or a genetic predisposition to epilepsy increases susceptibility to cocaine-induced seizures. OBJECTIVES: Our primary goal was to determine whether Scn1a dysfunction caused by the RH mutation alters sensitivity to cocaine-induced behavioral and electrographic (EEG) seizures. We also tested novelty- and cocaine-induced locomotor activity and assessed the expression of Nav1.1 in midbrain dopaminergic neurons. RESULTS: We found that RH mice had a profound increase in cocaine-induced behavioral seizure susceptibility compared to wild-type (WT) controls, which was confirmed with cortical EEG recordings. By contrast, although the RH mice were hyperactive in novel environments, cocaine-induced locomotor activity was comparable between the mutants and WT littermates. Finally, immunofluorescence experiments revealed a lack of Nav1.1 immunoreactivity in dopaminergic neurons. CONCLUSION: These data indicate that a disease-causing CNS VGSC mutation confers susceptibility to the proconvulsant, but not motoric, effects of cocaine.


Subject(s)
Cocaine/toxicity , Epilepsy/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures/chemically induced , Animals , Cocaine/administration & dosage , Dopamine/metabolism , Dose-Response Relationship, Drug , Electrocardiography , Electroencephalography , Fluorescent Antibody Technique , Genetic Predisposition to Disease , Male , Mice , Motor Activity/drug effects , Mutation , Seizures/genetics
20.
Neuropsychopharmacology ; 38(6): 1032-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23303068

ABSTRACT

Although norepinephrine (NE) does not typically modulate cocaine self-administration under traditional schedules of reinforcement, it is required for different inducers of the reinstatement of cocaine-seeking behavior via activation of multiple adrenergic receptor subtypes. We predicted that blockade of NE synthesis would attenuate all known modalities of reinstatement and showed previously that the selective dopamine ß-hydroxylase inhibitor, nepicastat, had no effect on either maintenance of operant cocaine self-administration maintained on a fixed-ratio 1 schedule or reinstatement of food seeking but did abolish cocaine-primed reinstatement. In the present series of studies, we first evaluated the dose-dependent effect of nepicastat (5, 50, or 100 mg/kg) on novelty-induced locomotor activity and found that it blunted exploration only at the highest dose. Next, we assessed the ability of nepicastat (50 mg/kg) to reduce breakpoint responding for cocaine on a progressive ratio schedule and reinstatement induced by drug-associated cues and stress. We found that nepicastat significantly lowered the breakpoint for cocaine, but not for regular chow or sucrose, and attenuated cue-, footshock-, and yohimbine-induced reinstatement. Combined, these results indicate that nepicastat can reduce the reinforcing properties of cocaine under a stringent schedule and can attenuate relapse-like behavior produced by cocaine, formerly cocaine-paired cues, and physiological and pharmacological stressors. Thus, nepicastat is one of those rare compounds that can reduce reinforced cocaine seeking as well as all three reinstatement modalities, while sparing exploratory behavior and natural reward seeking, making it a promising pharmacotherapy for cocaine addiction.


Subject(s)
Cocaine-Related Disorders/drug therapy , Cocaine-Related Disorders/enzymology , Cocaine/administration & dosage , Dopamine beta-Hydroxylase/antagonists & inhibitors , Imidazoles/therapeutic use , Thiones/therapeutic use , Animals , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dopamine beta-Hydroxylase/metabolism , Imidazoles/pharmacology , Male , Motor Activity/drug effects , Motor Activity/physiology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Thiones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...