Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Evol ; 112: 15-29, 2017 11.
Article in English | MEDLINE | ID: mdl-29037413

ABSTRACT

Dental topography reflects diet accurately in several extant and extinct mammalian clades. However, dental topographic dietary reconstructions have high success rates only when closely related taxa are compared. Given the dietary breadth that exists among extant apes and likely existed among fossil hominins, dental topographic values from many species and subspecies of great apes are necessary for making dietary inferences about the hominin fossil record. Here, we present the results of one metric of dental topography, Dirichlet normal energy (DNE), for seven groups of great apes (Pongo pygmaeus pygmaeus, Pan paniscus, Pan troglodytes troglodytes and schweinfurthii, Gorilla gorilla gorilla, Gorilla beringei graueri and beringei). Dirichlet normal energy was inadequate at differentiating folivores from frugivores, but was adequate at predicting which groups had more fibrous diets among sympatric African apes. Character displacement analyses confirmed there is substantial dental topographic and relative molar size (M1:M2 ratio; length, width, and area) divergence in sympatric apes when compared to their allopatric counterparts, but character displacement is only present in relative molar size when DNE is also considered. Presence of character displacement is likely due to indirect competition over similar food resources. Assuming similar ecological conditions in the Plio-Pleistocene, the derived masticatory apparatuses of the robust australopiths and early Homo may be due to indirect competition over dietary resources between the taxa, causing dietary niche partitioning. Our results imply that dental topography cannot be used to predict dietary categories in fossil hominins without consideration of ecological factors, such as dietary and geographic overlap. In addition, our results may open new avenues for understanding the community compositions of early hominins and the formation of specific ecological niches among hominin taxa.


Subject(s)
Diet , Hominidae/anatomy & histology , Tooth/anatomy & histology , Animals , Biological Evolution , Female , Humans , Male
2.
Evolution ; 69(6): 1630-1642, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25913032

ABSTRACT

Closely related species are likely to experience resource competition in areas where their ranges overlap. Fossil evidence suggests that hominins in East Africa c. 2-1.5 million years ago may have lived synchronically and sympatrically, and that competition may have contributed to the different tooth sizes observed in Homo and Paranthropus. To assess the likelihood that these taxa overlapped, we applied a character displacement model to the postcanine tooth size of fossil hominins and validated this model in populations of living primates. Mandibular fourth premolar (P4 ) crown size was measured from fossil taxa and from living primate species where dietary overlap is established. Dimensions of the P4 crown were fitted to a character matrix and described as the response variables of a generalized linear model that took taxon and location as input variables. The model recovered significant divergence in samples of closely related, living primates. When applied to fossil hominins the same model detected strong indications of character displacement between early Homo and Paranthropus (P = 0.002) on the basis of their P4 crown size. Our study is an example of how ecologically informed morphologies measured in appropriate extant referents can provide a comparative context for assessing community and ecological evolution in the fossil record.


Subject(s)
Bicuspid/anatomy & histology , Hominidae/anatomy & histology , Animals , Biological Evolution , Diet , Fossils , Hominidae/classification
3.
J Anat ; 226(2): 150-62, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25420453

ABSTRACT

The inhibitory cascade is a mathematical model for interpreting the relative size of the occlusal surfaces of mammalian molars in terms of developmental mechanisms. The cascade is derived from experimental studies of mouse molars developed in culture, and has been tested and applied to the dentitions of rodents, ungulates, carnivores, and platyrrhines. Results from such applications have provided new information regarding the origins of plesiomorphic traits in mammalian clade and how derived morphologies may arise. In this study we apply the inhibitory cascade model to the postcanine dentition of a sample of Old World primates that includes fossil hominins. The results of this study suggest that the inhibitory cascade (i.e. M1 < M2 < M3 ) describes the relative sizes of the molar occlusal areas of Old World primates and is likely the plesiomorphic condition for this clade. Within that clade, whereas most Old World monkeys have a M1 < M2 < M3 pattern, most apes have a M1 < M2 ≈ M3 pattern. This modified cascade suggests that greater levels of inhibition (or less activation) are acting on the posterior molars of apes, thus facilitating the reduction of M3 s within the apes. With the exception of the baboon genus Papio, extant congeners typically share the same molar inhibitory cascade. The differences in the relative size relationships observed in the molar and premolar-molar cascades of the species included in the fossil hominin genus Paranthropus suggest that although large postcanine teeth are a shared derived trait within this genus, the developmental basis for postcanine megadontia may not be the same in these two Paranthropus taxa. Our results show that phenotypic characters such as postcanine megadontia may not reflect common development.


Subject(s)
Biological Evolution , Cercopithecidae/anatomy & histology , Hominidae/anatomy & histology , Models, Biological , Molar/anatomy & histology , Animals , Dental Occlusion , Fossils , Odontogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...