Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 3(8-9): 588-96, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20449833

ABSTRACT

In this paper we describe the advantages of collecting infrared microspectral data in imaging mode opposed to point mode. Imaging data are processed using the PapMap algorithm, which co-adds pixel spectra that have been scrutinized for R-Mie scattering effects as well as other constraints. The signal-to-noise quality of PapMap spectra will be compared to point spectra for oral mucosa cells deposited onto low-e slides. Also the effects of software atmospheric correction will be discussed. Combined with the PapMap algorithm, data collection in imaging mode proves to be a superior method for spectral cytopathology.


Subject(s)
Cells, Cultured/chemistry , Cells, Cultured/classification , Microscopy/methods , Spectrophotometry, Infrared/methods , Animals , Humans
2.
Lab Invest ; 90(7): 1068-77, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20368702

ABSTRACT

Spectral cytopathology (SCP) is a novel spectroscopic method for objective and unsupervised classification of individual exfoliated cells. The limitations of conventional cytopathology are well recognized within the pathology community. In SCP, cellular differentiation is made by observing molecular changes in the nucleus and the cytoplasm, which may or may not produce morphological changes detectable by conventional cytopathology. This proof of concept study shows SCP's potential as an enhancing tool for cytopathologists by aiding in the accurate and reproducible diagnosis of cells in all states of disease. Infrared spectra are collected from cervical cells deposited onto reflectively coated glass slides. Each cell has a corresponding infrared spectrum that describes its unique biochemical composition. Spectral data are processed and analyzed by an unsupervised chemometric algorithm, principal component analysis. In this blind study, cervical samples are classified by analyzing the spectra of morphologically normal looking squamous cells from normal samples and samples diagnosed by conventional cytopathology with low-grade squamous intraepithelial lesions. SCP discriminated cytopathological diagnoses amongst 12 different cervical samples with a high degree of specificity and sensitivity. SCP also correlated two samples with abnormal spectral changes: these samples had a normal cytopathological diagnosis but had a history of abnormal cervical cytology. The spectral changes observed in the morphologically normal looking cells are most likely because of an infection with human papillomavirus (HPV). HPV DNA testing was conducted on five additional samples, and SCP accurately differentiated these samples by their HPV status. SCP tracks biochemical variations in cells that are consistent with the onset of disease. HPV has been implicated as the cause of these changes detected spectroscopically. SCP does not depend on identifying the sparse number of morphologically abnormal cells within a large sample to make an accurate classification, as does conventional cytopathology. These findings suggest that the detection of cellular biochemical variations by SCP can serve as a new enhancing screening method that can identify earlier stages of disease.


Subject(s)
Cervix Uteri/pathology , Pathology/methods , Cervix Uteri/chemistry , Female , Humans , Spectrophotometry, Infrared , Uterine Cervical Neoplasms/pathology , Uterine Cervical Dysplasia/pathology
3.
Lab Invest ; 90(4): 589-98, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20142808

ABSTRACT

Spectral cytopathology (SCP) is a novel approach for diagnostic differentiation of disease in individual exfoliated cells. SCP is carried out by collecting information on each cell's biochemical composition through an infrared micro-spectral measurement, followed by multivariate data analysis. Deviations from a cell's natural composition produce specific spectral patterns that are exclusive to the cause of the deviation or disease. These unique spectral patterns are reproducible and can be identified and used through multivariate statistical methods to detect cells compromised at the molecular level by dysplasia, neoplasia, or viral infection. In this proof of concept study, a benchmark for the sensitivity of SCP is established by classifying healthy oral squamous cells according to their anatomical origin in the oral cavity. Classification is achieved by spectrally detecting cells with unique protein expressions: for example, the squamous cells of the tongue are the only cell type in the oral cavity that have significant amounts of intracytoplasmic keratin, which allows them to be spectrally differentiated from other oral mucosa cells. Furthermore, thousands of cells from a number of clinical specimens were examined, among them were squamous cell carcinoma, malignancy-associated changes including reactive atypia, and infection by the herpes simplex virus. Owing to its sensitivity to molecular changes, SCP often can detect the onset of disease earlier than is currently possible by cytopathology visualization. As SCP is based on automated instrumentation and unsupervised software, it constitutes a diagnostic workup of medical samples devoid of bias and inconsistency. Therefore, SCP shows potential as a complementary tool in medical cytopathology.


Subject(s)
Mouth Mucosa/pathology , Mouth Neoplasms/diagnosis , Spectrum Analysis/methods , Epithelial Cells/pathology , Herpes Labialis/diagnosis , Herpes Labialis/pathology , Histocytochemistry , Humans , Infrared Rays , Mouth Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...