Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37177020

ABSTRACT

We have demonstrated the high-density formation of super-atom-like Si quantum dots with Ge-core on ultrathin SiO2 with control of high-selective chemical-vapor deposition and applied them to an active layer of light-emitting diodes (LEDs). Through luminescence measurements, we have reported characteristics carrier confinement and recombination properties in the Ge-core, reflecting the type II energy band discontinuity between the Si-clad and Ge-core. Additionally, under forward bias conditions over a threshold bias for LEDs, electroluminescence becomes observable at room temperature in the near-infrared region and is attributed to radiative recombination between quantized states in the Ge-core with a deep potential well for holes caused by electron/hole simultaneous injection from the gate and substrate, respectively. The results will lead to the development of Si-based light-emitting devices that are highly compatible with Si-ultra-large-scale integration processing, which has been believed to have extreme difficulty in realizing silicon photonics.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234388

ABSTRACT

The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10-7-10-3 mbar and 900-980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2-3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3-10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth.

3.
ACS Nano ; 14(10): 13127-13136, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32960037

ABSTRACT

Highly polar materials are usually preferred over weakly polar ones to study strong electron-phonon interactions and its fascinating properties. Here, we report on the achievement of simultaneous confinement of charge carriers and phonons at the vicinity of a 2D vertical homovalent singularity (antiphase boundary, APB) in an (In,Ga)P/SiGe/Si sample. The impact of the electron-phonon interaction on the photoluminescence processes is then clarified by combining transmission electron microscopy, X-ray diffraction, ab initio calculations, Raman spectroscopy, and photoluminescence experiments. 2D localization and layer group symmetry properties of homovalent electronic states and phonons are studied by first-principles methods, leading to the prediction of a type-II band alignment between the APB and the surrounding semiconductor matrix. A Huang-Rhys factor of 8 is finally experimentally determined for the APB emission line, underlining that a large and unusually strong electron-phonon coupling can be achieved by 2D vertical quantum confinement in an undoped III-V semiconductor. This work extends the concept of an electron-phonon interaction to 2D vertically buried III-V homovalent nano-objects and therefore provides different approaches for material designs, vertical carrier transport, heterostructure design on silicon, and device applications with weakly polar semiconductors.

4.
Sci Rep ; 8(1): 11160, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042433

ABSTRACT

The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells' behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.


Subject(s)
Computer Storage Devices , Electric Conductivity , Electric Impedance , Hafnium/analysis , Hafnium/chemistry , Oxides/analysis , Oxides/chemistry , Transistors, Electronic , Algorithms , Carbon/analysis , Carbon/chemistry , Crystallization , Hot Temperature , Micro-Electrical-Mechanical Systems , Microscopy, Electron, Transmission , Models, Theoretical , Oxygen/analysis , Photoelectron Spectroscopy , X-Ray Diffraction
5.
Nanotechnology ; 29(41): 415702, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30047925

ABSTRACT

We investigate the distribution of Sn in GeSn nano-heteroepitaxial clusters deposited at temperatures well exceeding the eutectic temperature of the GeSn system. The 600 °C molecular beam epitaxy on Si-patterned substrates results in the selective growth of GeSn nano-clusters having a 1.4 ± 0.5 at% Sn content. These nano-clusters feature Sn droplets on their faceted surfaces. The subsequent deposition of a thin Ge cap layer induced the incorporation of the Sn atoms segregated on the surface in a thin layer wetting the nano-dots surface with 8 ± 0.5 at% Sn. The presence of this wetting layer is associated with a relatively strong photoluminescence emission that we attribute to the direct recombination occurring in the GeSn nano-dots outer region.

6.
ACS Appl Mater Interfaces ; 8(40): 26948-26955, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27642767

ABSTRACT

The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

7.
ACS Appl Mater Interfaces ; 8(39): 26374-26380, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27603117

ABSTRACT

In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and µ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

8.
Sci Rep ; 6: 28155, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27312225

ABSTRACT

With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 µm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.


Subject(s)
Computer Storage Devices , Equipment Design , Hafnium/chemistry , Oxides/chemistry , Semiconductors , Electric Impedance , Hot Temperature , Silicones/chemistry , Titanium/chemistry
9.
Sci Rep ; 6: 22709, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26940260

ABSTRACT

The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

10.
ACS Appl Mater Interfaces ; 8(3): 2017-26, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26709534

ABSTRACT

Dislocation networks are one of the most principle sources deteriorating the performances of devices based on lattice-mismatched heteroepitaxial systems. We demonstrate here a technique enabling fully coherent germanium (Ge) islands selectively grown on nanotip-patterned Si(001) substrates. The silicon (Si)-tip-patterned substrate, fabricated by complementary metal oxide semiconductor compatible nanotechnology, features ∼50-nm-wide Si areas emerging from a SiO2 matrix and arranged in an ordered lattice. Molecular beam epitaxy growths result in Ge nanoislands with high selectivity and having homogeneous shape and size. The ∼850 °C growth temperature required for ensuring selective growth has been shown to lead to the formation of Ge islands of high crystalline quality without extensive Si intermixing (with 91 atom % Ge). Nanotip-patterned wafers result in geometric, kinetic-diffusion-barrier intermixing hindrance, confining the major intermixing to the pedestal region of Ge islands, where kinetic diffusion barriers are, however, high. Theoretical calculations suggest that the thin Si/Ge layer at the interface plays, nevertheless, a significant role in realizing our fully coherent Ge nanoislands free from extended defects especially dislocations. Single-layer graphene/Ge/Si-tip Schottky junctions were fabricated, and thanks to the absence of extended defects in Ge islands, they demonstrate high-performance photodetection characteristics with responsivity of ∼45 mA W(-1) and an Ion/Ioff ratio of ∼10(3).

11.
ACS Appl Mater Interfaces ; 6(20): 17496-505, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25255194

ABSTRACT

Integration of functional oxides on Si substrates could open a pathway to integrate diverse devices on Si-based technology. Oxygen vacancies (Vo(··)) can strongly affect solid state properties of oxides, including the room temperature ferromagnetism (RTFM) in diluted magnetic oxides. Here, we report a systematical study on the RTFM of oxygen vacancy engineered (by Pr(3+) doping) CeO2 epitaxial thin films on Si substrates. High quality, mixed single crystalline Ce1-xPrxO2-δ (x = 0-1) solid solution films were obtained. The Ce ions in CeO2 with a fluorite structure show a Ce(4+)-dominant valence state in all films. The local crystal structures of the films were analyzed in detail. Pr doping creates both Vo(··) and PrO8-complex defects in CeO2 and their relative concentrations vary with the Pr-doping level. The RTFM properties of the films reveal a strong dependence on the relative Vo(··) concentration. The RTFM in the films initially increases with higher Pr-doping levels due to the increase of the F(+) center (Vo(··) with one occupied electron) concentration and completely disappears when x > 0.2, where the magnetic polaron concentration is considered to decline below the percolation threshold, thus long-range FM order can no longer be established. We thus demonstrate the possibility to directly grow RTFM Pr-doped CeO2 films on Si substrates, which can be an interesting candidate for potential magneto-optic or spintronic device applications.

12.
J Appl Crystallogr ; 46(Pt 4): 868-873, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-24046490

ABSTRACT

On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

13.
Nat Nanotechnol ; 3(7): 402-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18654563

ABSTRACT

Ferroelectric materials have emerged in recent years as an alternative to magnetic and dielectric materials for nonvolatile data-storage applications. Lithography is widely used to reduce the size of data-storage elements in ultrahigh-density memory devices. However, ferroelectric materials tend to be oxides with complex structures that are easily damaged by existing lithographic techniques, so an alternative approach is needed to fabricate ultrahigh-density ferroelectric memories. Here we report a high-temperature deposition process that can fabricate arrays of individually addressable metal/ferroelectric/metal nanocapacitors with a density of 176 Gb inch(-2). The use of an ultrathin anodic alumina membrane as a lift-off mask makes it possible to deposit the memory elements at temperatures as high as 650 degrees C, which results in excellent ferroelectric properties.


Subject(s)
Information Storage and Retrieval , Magnetics , Membranes, Artificial , Nanotechnology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Electric Capacitance , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...