Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
Sci Rep ; 14(1): 12757, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830941

ABSTRACT

Reef-building corals live in highly hydrodynamic environments, where water flow largely controls the complex chemical microenvironments surrounding them-the concentration boundary layer (CBL). The CBL may be key to alleviate ocean acidification (OA) effects on coral colonies by partially isolating them. However, OA effects on coral CBL remain poorly understood, particularly under different flow velocities. Here, we investigated these effects on the reef-building corals Acropora cytherea, Pocillopora verrucosa, and Porites cylindrica. We preconditioned corals to a control (pH 8.0) and OA (pH 7.8) treatment for four months and tested how low flow (2 cm s-1) and moderate flow (6 cm s-1) affected O2 and H+ CBL traits (thickness, surface concentrations, and flux) inside a unidirectional-flow chamber. We found that CBL traits differed between species and flow velocities. Under OA, traits remained generally stable across flows, except surface pH. In all species, the H+ CBL was thin and led to lower surface pH. Still, low flow thickened H+ CBLs and increased light elevation of surface pH. In general, our findings reveal a weak to null OA modulation of the CBL. Moreover, the OA-buffering capacity by the H+ CBL may be limited in coral species, though low flow could enhance CBL sheltering.


Subject(s)
Anthozoa , Oceans and Seas , Oxygen , Seawater , Anthozoa/physiology , Anthozoa/metabolism , Animals , Hydrogen-Ion Concentration , Oxygen/metabolism , Oxygen/chemistry , Seawater/chemistry , Coral Reefs , Water Movements , Ocean Acidification
2.
Curr Biol ; 34(12): 2693-2701.e4, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38788707

ABSTRACT

Sea urchins are primary herbivores on coral reefs, regulating algal biomass and facilitating coral settlement and growth.1,2,3,4,5,6,7,8,9,10,11,12 Recurring mass mortality events (MMEs) of Diadema species Gray, 1825 have been recorded globally,13,14,15,16,17,18,19,20,21,22,23 the most notorious and ecologically significant of which occurred in the Caribbean in 1983,14,17,19,20 contributing to the shift from coral to algal-dominated ecosystems.17,24,25 Recently, first evidence of Diadema setosum mass mortality was reported from the eastern Mediterranean Sea.23 Here, we report extensive mass mortalities of several diadematoid species inhabiting the Red Sea and Western Indian Ocean (WIO)26,27,28 including first evidence of mortalities in the genus Echinothrix Peters, 1853. Mortalities initiated in the Gulf of Aqaba on December 2022 and span the Red Sea, the Gulf of Oman, and the Western Indian Ocean (Réunion Island), with population declines reaching 100% at some sites. Infected individuals are characterized by spine loss and tissue necrosis, resulting in exposed skeletons (i.e., tests) and mortality. Molecular diagnostics of the 18S rRNA gene confirm the presence of a waterborne scuticociliate protozoan most closely related to Philaster apodigitiformis in infected specimens-identical to the pathogen found in the 2022 Caribbean mass mortality of Diadema antillarum.13,15,18 Collapse of these key benthic grazers in the Red Sea and Western Indian Ocean may lead to algal dominance over corals, threatening the stability of coral reefs on a regional scale.29,30,31,32 We issue a warning regarding the further expansion of mortalities and call for immediate monitoring and conservation efforts for these key ecological species.


Subject(s)
Sea Urchins , Animals , Indian Ocean , Sea Urchins/parasitology , Sea Urchins/physiology , Coral Reefs
3.
Sci Total Environ ; 912: 169276, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38086480

ABSTRACT

Marine debris, particularly microdebris (< 1 mm) poses a potential threat to marine life, including reef-building corals. While previous research has mainly focused on the impact of single polymer microplastics, the effects of natural microdebris, composed of a mixture of materials, have not been explored. Therefore, this study aimed to assess the effects of different microdebris, originating from major sources of pollution, on reef-building corals. For this, we exposed two scleractinian coral species, Pocillopora verrucosa and Stylophora pistillata, known to frequently ingest microplastics, to four types of microdebris in an 8-week laboratory experiment: fragmented environmental plastic debris, artificial fibers from clothing, residues from the automobile sector consisting of tire wear, brake abrasion, and varnish flakes, a single polymer microplastic treatment consisting of polyethylene particles, and a microdebris-free control treatment. Specifically, we (I) compared the effects of the different microdebris on coral growth, necrosis, and photosynthesis, (II) investigated the difference between the microdebris mixtures and the exposure to the single polymer treatment, and (III) identified potential mechanisms causing species-specific effects by contrasting the feeding responses of the two coral species on microdebris and natural food. We show that the fibers and tire wear had the strongest effects on coral physiology, with P. verrucosa being more affected than S. pistillata. Both species showed increased volume growth in response to the microdebris treatments, accompanied by decreased calcification in P. verrucosa. Photosynthetic efficiency of the symbionts was enhanced in both species. The species-specific physiological responses might be attributed to feeding reactions, with P. verrucosa responding significantly more often to microdebris than S. pistillata. These findings highlight the effect of different microdebris on coral physiology and the need for future studies to use particle mixtures to better mimic naturally occurring microdebris and assess its effect on corals in more detail.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Coral Reefs , Plastics/toxicity , Microplastics , Photosynthesis
4.
Glob Chang Biol ; 28(1): 33-45, 2022 01.
Article in English | MEDLINE | ID: mdl-34710272

ABSTRACT

The pollution of the marine environment with microplastics is pervasive. However, microplastic concentrations in the seawater are lower than the number of particles entering the oceans, suggesting that plastic particles accumulate in environmental sinks. Yet, the exact long-term sinks related to the "missing plastic" phenomenon are barely explored. Sediments in nearshore biogenic habitats are known to trap large amounts of microplastics, but also the three-dimensional structures of coral reefs might serve as unique, living long-term sinks. The main framework builders, reef-building corals, have been shown to ingest and overgrow microplastics, potentially leading to a deposition of particles in reef structures. However, little is known about the number of deposited particles and the underlying processes determining the permanent deposition in the coral skeletons. To test whether corals may act as living long-term sink for microplastic, we exposed four reef-building coral species to polyethylene microplastics (200 particles L-1 ) in an 18-month laboratory experiment. We found microplastics in all treatment specimens, with low numbers of particles trapped in the coral tissue (up to 2 particles per cm2 ) and much higher numbers in the skeleton (up to 84 particles per cm3 ). The numbers of particles accumulated in the coral skeletons were mainly related to coral growth (i.e., skeletal growth in volume), suggesting that deposition is a regularly occurring stochastic process. We estimate that reef-building corals may remove 0.09%-2.82% of the bioavailable microplastics from tropical shallow-reef waters per year. Our study shows for the first time that microplastic particles accumulate permanently in a biological sink, helping to explain the "missing plastic" phenomenon. This highlights the importance of coral reefs for the ecological balance of the oceans and reinforces the need to protect them, not only to mitigate the effects of climate change but also to preserve their ecosystem services as long-term sink for microplastic.


Subject(s)
Anthozoa , Microplastics , Animals , Coral Reefs , Ecosystem , Plastics
5.
Environ Pollut ; 290: 118010, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34488160

ABSTRACT

Plastic pollution is an emerging stressor that increases pressure on ecosystems such as coral reefs that are already challenged by climate change. However, the effects of plastic pollution in combination with global warming are largely unknown. Thus, the goal of this study was to determine the cumulative effects of microplastic pollution with that of global warming on reef-building coral species and to compare the severity of both stressors. For this, we conducted a series of three controlled laboratory experiments and exposed a broad range of coral species (Acropora muricata, Montipora digitata, Porites lutea, Pocillopora verrucosa, and Stylophora pistillata) to microplastic particles in a range of concentrations (2.5-2500 particles L-1) and mixtures (from different industrial sectors) at ambient temperatures and in combination with heat stress. We show that microplastic can occasionally have both aggravating or mitigating effects on the corals' thermal tolerance. In comparison to heat stress, however, microplastic constitutes a minor stressor. While heat stress led to decreased photosynthetic efficiency of algal symbionts, and increased bleaching, tissue necrosis, and mortality, treatment with microplastic particles had only minor effects on the physiology and health of the tested coral species at ambient temperatures. These findings underline that while efforts to reduce plastic pollution should continue, they should not replace more urgent efforts to halt global warming, which are immediately needed to preserve remaining coral reef ecosystems.


Subject(s)
Anthozoa , Animals , Coral Reefs , Ecosystem , Heat-Shock Response , Microplastics , Plastics/toxicity
6.
Syst Appl Microbiol ; 43(5): 126123, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32847789

ABSTRACT

The aim of the study was to characterise the diversity and niche-specific colonization of Vibrio spp. in a marine aquaria system by a cultivation-dependent approach. A total of 53 Vibrio spp. isolates were cultured from different ecological niches in a marine aquarium including microplastic (MP) and sandy sediment particles (12 weeks after added sterile to the system), detritus, and the surrounding aquarium water. Based on the 16S rRNA gene sequence phylogeny and multilocus sequence analysis (MLSA) the isolates were assigned to seven different phylotypes. Six phylotypes were identified by high probability to the species level. The highest phylotype diversity was cultured from detritus and water (six out of seven phylotypes), while only two phylotypes were cultured from MP and sediment particles. Genomic fingerprinting indicated an even higher genetic diversity of Vibrio spp. at the strain (genotype) level. Again, the highest diversity of genotypes was recovered from detritus and water while only few partially particle-type specific genotypes were cultured from MP and sediment particles. Phylotype V-2 formed an independent branch in the MLSA tree and could not be assigned to a described Vibrio species. Isolates of this phylotype showed highest 16S rRNA gene sequence similarity to type strains of Vibrio japonicus (98.5%) and Vibrio caribbeanicus (98.4%). A representative isolate, strain THAF100T, was characterised by a polyphasic taxonomic approach and Vibrio aquimaris sp. nov., with strain THAF100T (=DSM 109633T=LMG 31434T=CIP 111709T) as type strain, is proposed as novel species.


Subject(s)
Ecosystem , Seawater/microbiology , Vibrio/classification , Vibrio/physiology , Animals , Aquatic Organisms/microbiology , Bacterial Typing Techniques , Biodiversity , Genes, Bacterial , Genes, rRNA , Genetic Variation , Genome, Bacterial , Genotype , Geologic Sediments/microbiology , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vibrio/genetics , Vibrio/isolation & purification , Virulence/genetics
7.
Biol Open ; 8(12)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31843766

ABSTRACT

Coral reefs are in global decline mainly due to increasing sea surface temperatures triggering coral bleaching. Recently, high salinity has been linked to increased thermotolerance and decreased bleaching in the sea anemone coral model Aiptasia. However, the underlying processes remain elusive. Using two Aiptasia host--endosymbiont pairings, we induced bleaching at different salinities and show reduced reactive oxygen species (ROS) release at high salinities, suggesting a role of osmoadaptation in increased thermotolerance. A subsequent screening of osmolytes revealed that this effect was only observed in algal endosymbionts that produce 2-O-glycerol-α-D-galactopyranoside (floridoside), an osmolyte capable of scavenging ROS. This result argues for a mechanistic link between osmoadaptation and thermotolerance, mediated by ROS-scavenging osmolytes (e.g., floridoside). This sheds new light on the putative mechanisms underlying the remarkable thermotolerance of corals from water bodies with high salinity such as the Red Sea or Persian/Arabian Gulf and holds implications for coral thermotolerance under climate change.This article has an associated First Person interview with the first author of the paper.

8.
Environ Pollut ; 254(Pt B): 113074, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31473388

ABSTRACT

Coral reefs are increasingly affected by the consequences of global change such as increasing temperatures or pollution. Lately, microplastics (i.e., fragments < 5 mm) have been identified as another potential threat. While previous studies have assessed short-term effects caused by high concentrations of microplastics, nothing is known about the long-term effects of microplastics under realistic concentrations. Therefore, a microcosm study was conducted and corals of the genera Acropora, Pocillopora, Porites, and Heliopora were exposed to microplastics in a concentration of 200 particles L-1, relating to predicted pollution levels. Coral growth and health, as well as symbiont properties were studied over a period of six months. The exposure caused species-specific effects on coral growth and photosynthetic performance. Signs of compromised health were observed for Acropora and Pocillopora, those taxa that frequently interact with the particles. The results indicate elevated energy demands in the affected species, likely due to physical contact of the corals to the microplastics. The study shows that microplastic pollution can have negative impacts on hermatypic corals. These effects might amplify corals' susceptibility to other stressors, further contributing to community shifts in coral reef assemblages.


Subject(s)
Anthozoa/physiology , Coral Reefs , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Photosynthesis , Species Specificity , Temperature
9.
Int J Syst Evol Microbiol ; 68(5): 1689-1696, 2018 May.
Article in English | MEDLINE | ID: mdl-29620493

ABSTRACT

A novel Gram-stain-negative, rod-shaped, strictly aerobic, and orange-yellow pigmented bacterium, designated strain AFPH31T, was isolated from internal tissues of the scleractinian coral Pocillopora damicornis, cultured in a marine aquarium system at the Justus Liebig University Giessen, Germany. Phylogenetic analyses based on 16S rRNA gene sequences placed the strain within the monophyletic cluster of the genus Winogradskyella and showed highest sequence similarity to type strains of the species Winogradskyella eximia (96.6 %), Winogradskyella wandonensis (96.4 %), and Winogradskyella damuponensis (96.4 %). The strain grew well at 15-37 °C (optimum 25 °C), in the presence of 0.5-8.5 % NaCl (optimum 2 %), and at pH 5.5-8.5 (optimum pH 6.0-7.5). The major cellular fatty acids of strain AFPH31T were iso-C15 : 0 (22.0 %), iso-C15 : 1 G (16.9 %), iso-C17 : 0 3-OH (14.9 %), and anteiso-C15 : 0 (11.9 %). The major compound in the polyamine pattern was sym-homospermidine. The quinone system contained predominantly menaquinone MK-6. The polar lipid profile contained predominantly phosphatidylethanolamine, one unidentified aminolipid, and two unidentified lipids lacking a functional group. The genomic DNA G+C content was 36.8 mol%. According to the phylogenetic, chemotaxonomic, and phenotypic analyses we propose a novel species of the genus Winogradskyella named Winogradskyella pocilloporae sp. nov. The type strain is AFPH31T (=CCM 8816T=CIP 111546T).


Subject(s)
Anthozoa/microbiology , Flavobacteriaceae/classification , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Germany , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/analogs & derivatives , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
10.
Syst Appl Microbiol ; 41(2): 73-84, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29398077

ABSTRACT

Two Gram-stain-negative, facultative anaerobic, motile, rod-shaped strains, S-B4-1UT and JOB-63a, forming small whitish transparent colonies on marine agar, were isolated from a sponge of the genus Haliclona. The strains shared 99.7% 16S rRNA gene sequence identity and a DNA-DNA hybridization value of 100%, but were differentiated by genomic fingerprinting using rep-PCRs. 16S rRNA gene sequence phylogeny placed the strains as a sister branch to the monophyletic genus Endozoicomonas (Oceanospirillales; Gammaproteobacteria) with 92.3-94.3% 16S rRNA gene sequence similarity to Endozoicomonas spp., 91.9 and 92.1% to Candidatus Endonucleobacter bathymodiolin, and 91.9 to 92.1% to the type strains of Kistimonas spp. Core genome based phylogeny of strain S-B4-1UT confirmed the phylogenetic placement. Major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and 8 (C18:1 ω7c/C18:1 ω6c) followed by C10:0 3-OH, C16:0, and C18:0. The G+C content was 50.1-51.4mol%. The peptidoglycan diamino acid of strain S-B4-1UT was meso-diaminopimelic acid, the predominant polyamine spermidine, the major respiratory quinone ubiquinone Q-9; phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine were major polar lipids. Based on the clear phylogenetic distinction, the genus Parendozoicomonas gen. nov. is proposed, with Parendozoicomonas haliclonae sp. nov. as type species and strain S-B4-1UT (=CCM 8713T=DSM 103671T=LMG 29769T) as type strain and JOB-63a as a second strain of the species. Based on the 16S rRNA gene sequence phylogeny of the Oceanospirillales within the Gammaproteobacteria, the Endozoicomonaceae fam. nov. is proposed including the genera Endozoicomonas, Parendozoicomonas, and Kistimonas as well as the Candidatus genus Endonucleobacter.


Subject(s)
Gammaproteobacteria/classification , Haliclona/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/chemistry , Ubiquinone/chemistry
11.
Int J Syst Evol Microbiol ; 68(3): 835-843, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29458471

ABSTRACT

A bright-orange-pigmented, Gram-stain-negative, motile, and rod-shaped bacterium, strain MAA42T, was isolated from a marine sponge of the genus Haliclona, which is in long-time culture in a marine aquarium system at the Justus Liebig University Giessen, Germany. The strain grew at 4-34 °C (optimum 28 °C), in the presence of 0.5-9.5 % (w/v) NaCl (optimum 3.5 %) and at pH 4.5-10.0 (optimum pH 7.5). Strain MAA42T shared the highest 16S rRNA gene sequence similarity (98.1 %) with the type strain of Litorimonas taeanensis. Sequence similarities to all other closely related type strains were below 97 %. DNA-DNA hybridization of strain MAA42T with L. taeanensis DSM 22008T resulted in values of 4.7 % (reciprocal 17.7 %). Major cellular fatty acids of strain MAA42T were C18 : 1ω7c (66.2 %), C18 : 1 2-OH (17.4 %), and C18 : 0 (14.1 %). Spermidine was predominant in the polyamine pattern, and ubiquinone Q-10 was the major respiratory quinone. The polar lipid profile contained the major compounds phosphatidylglycerol, monoglycosyldiglyceride, three unidentified phospholipids, and one unidentified glycolipid. Glucuronopyranosyldiglyceride was present as a minor compound. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The genomic DNA G+C content was 52.8 mol%. Based on the genotypic, chemotaxonomic, and phenotypic analyses, strain MAA42T represents a novel species of the genus Litorimonas, for which the name Litorimonas haliclonae is proposed. The type strain is MAA42T (=CCM 8709T=CIP 111178T=LMG 29765T).


Subject(s)
Alphaproteobacteria/classification , Haliclona/microbiology , Phylogeny , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Germany , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/chemistry , Ubiquinone/chemistry
12.
Environ Pollut ; 237: 955-960, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29146203

ABSTRACT

Pollution of marine environments with microplastic particles (i.e. plastic fragments <5 mm) has increased rapidly during the last decades. As these particles are mainly of terrestrial origin, coastal ecosystems such as coral reefs are particularly threatened. Recent studies revealed that microplastic ingestion can have adverse effects on marine invertebrates. However, little is known about its effects on small-polyp stony corals that are the main framework builders in coral reefs. The goal of this study is to characterise how different coral species I) respond to microplastic particles and whether the exposure might II) lead to health effects. Therefore, six small-polyp stony coral species belonging to the genera Acropora, Pocillopora, and Porites were exposed to microplastics (polyethylene, size 37-163 µm, concentration ca. 4000 particles L-1) over four weeks, and responses and effects on health were documented. The study showed that the corals responded differentially to microplastics. Cleaning mechanisms (direct interaction, mucus production) but also feeding interactions (i.e. interaction with mesenterial filaments, ingestion, and egestion) were observed. Additionally, passive contact through overgrowth was documented. In five of the six studied species, negative effects on health (i.e. bleaching and tissue necrosis) were reported. We here provide preliminary knowledge about coral-microplastic-interactions. The results call for further investigations of the effects of realistic microplastic concentrations on growth, reproduction, and survival of stony corals. This might lead to a better understanding of resilience capacities in coral reef ecosystems.


Subject(s)
Anthozoa/physiology , Coral Reefs , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Ecosystem , Plastics/analysis , Toxicity Tests , Water Pollutants, Chemical/analysis
13.
Int J Syst Evol Microbiol ; 67(12): 4902-4910, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29058658

ABSTRACT

A yellow-pigmented, Gram-stain-negative, motile and rod-shaped bacterium, strain M1A16T, was isolated from the internal tissue of a sponge of the genus Haliclona, which was long-term cultured in the CEMarin aquaria system at Justus Liebig University of Giessen. The strain grew well at 20-32 °C (optimum 25 °C), in the presence of 0-6 % NaCl (optimum 3 %), and at pH 5.5-9.0 (optimum pH 7.0-8.0). Phylogenetic analysis based on its 16S rRNA gene sequence placed the strain within the monophyletic cluster of the genus Winogradskyella with highest sequence similarity to Winogradskyella jejuensis CP32T (98.3 % 16S rRNA gene sequence similarity). Sequence similarities to all other type strains were 98.0 % or less. DNA-DNA hybridization of strain M1A16T with W. jejuensis CP32T resulted in hybridization values of 44.1 % (reciprocal 68.1 %). Major cellular fatty acids of strain M1A16T were iso-C15 : 1 G (18.1 %), iso-C15 : 0 (13.7 %), C16 : 1ω7c (12.9 %), iso-C17 : 0 3-OH (10.6 %) and iso-C16 : 0 3-OH (10.2 %). The overall polyamine content was very low with major components being cadaverine, spermidine and sym-homospermidine. The major quinone was menaquinone MK-6. The polar lipid profile contained predominantly phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids devoid of a detectable functional group. The genomic DNA G+C content was 32.7 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic analyses, strain M1A16T represents a novel species of the genus Winogradskyella, for which the name Winogradskyella haliclonae sp. nov. is proposed. The type strain is M1A16T (=DSM 103138T=CCM 8681T=LMG 29588T=CIP 111091T).


Subject(s)
Flavobacteriaceae/classification , Haliclona/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/analogs & derivatives , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
14.
Int J Syst Evol Microbiol ; 65(7): 2241-2247, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25862387

ABSTRACT

An orange-pigmented, Gram-staining-negative, rod-shaped bacterium, designated 96_Hippo_TS_3/13(T) was isolated from the brood pouch of a diseased seahorse male of the species Hippocampus barbouri from the animal facility of the University of Giessen, Germany. Phylogenetic analyses based on the nearly full-length 16S rRNA gene sequence placed strain 96_Hippo_TS_3/13(T) into the monophyletic cluster of the genus Mesonia within the family Flavobacteriaceae. However, the strain shared only 92.2-93.8% sequence similarity to type strains of species of the genus Mesonia, with highest sequence similarity to the type strain of Mesonia aquimarina. Cellular fatty acid analysis showed a Mesonia-typical fatty acid profile including several branched and hydroxyl fatty acids with highest amounts of iso-C15 : 0 (40.9%) followed by iso-C17 : 0 3-OH (14.8%). In the polyamine pattern, sym-homospermidine was predominant. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The quinone system contained exclusively menaquinone MK-6. The only identified compound in the polar lipid profile was phosphatidylethanolamine present in major amounts. Additionally, major amounts of an unidentified aminolipid and two unidentified lipids not containing a phosphate group, an amino group or a sugar residue were detected. The genomic G+C content of strain 96_Hippo_TS_3/13(T) was 30 mol%. Based on genotypic, chemotaxonomic and physiological characterizations we propose a novel species of the genus Mesonia, Mesonia hippocampi sp. nov., with strain 96_Hippo_TS_3/13(T) ( = CIP 110839T = LMG 28572(T) = CCM 8557(T)) as the type strain. An emended description of the genus Mesonia is also provided.


Subject(s)
Flavobacteriaceae/classification , Phylogeny , Smegmamorpha/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Germany , Male , Molecular Sequence Data , Peptidoglycan/chemistry , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/analogs & derivatives , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...