Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sex Transm Dis ; 51(1): 38-46, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37889929

ABSTRACT

BACKGROUND: During the 2022 mpox outbreak, most cases were associated with sexual contact, and many people with mpox sought care from sexual health clinics and programs. The National Network of STD Clinical Prevention Training Centers, in partnership with the Centers for Disease Control and Prevention, conducted a survey of US sexual health clinics and programs to assess knowledge, practices, and experiences around mpox to inform a future public health response. METHODS: Between August 31 and September 13, 2022, the National Network of STD Clinical Prevention Training Centers facilitated a web-based survey. Descriptive statistics were generated in R. RESULTS: Among 168 responses by clinicians (n = 131, 78%) and program staff (n = 37, 22%), more than half (51%) reported at least somewhat significant mpox-related clinical disruptions including burdensome paperwork requirements for mpox testing (40%) and tecovirimat use (88%). Long clinic visits (51%) added additional burden, and the median mpox-related visit lasted 1 hour. Few clinicians felt comfortable with advanced pain management, and clinicians felt most uninformed about preexposure (19%) and postexposure (24%) prophylaxis. Of 89 respondents involved in vaccination, 61% reported using equity strategies; however, accounts of these strategies revealed a focus on guideline or risk factor-based screenings instead of equity activities. CONCLUSIONS: These findings highlight the substantial impact of the 2022 mpox outbreak on sexual health care in the United States. Critical gaps and barriers were identified that may inform additional mpox training and technical assistance, including challenges with testing, diagnosis, and management as well as a disconnect between programs' stated goal of equity and operationalization of strategies to achieve equity.


Subject(s)
Mpox (monkeypox) , Sexual Health , United States/epidemiology , Humans , Health Knowledge, Attitudes, Practice , Ambulatory Care , Ambulatory Care Facilities
2.
J Hazard Mater ; 456: 131617, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224711

ABSTRACT

To carry out risk assessments of benzophenone-type UV filters (BPs), fast and accurate analytical methods are crucial to determine and monitor levels in the environment. This study presents an LC-MS/MS method that requires minimal sample preparation and yet can identify 10 different BPs in environmental samples such as surface or wastewater resulting in a LOQ range from 2 to 1060 ng/L. The method suitability was tested through environmental monitoring, which showed that, BP-4 is the most abundant derivative found in the surface waters of Germany, India, South Africa and Vietnam. BP-4 levels correlate with the WWTP effluent fraction of the respective river for selected samples in Germany. Peak values of 171 ng/L for 4-hydroxybenzophenone (4-OH-BP), as measured in Vietnamese surface water, already exceed the PNEC value of 80 ng/L, elevating 4-OH-BP to the status of a new pollutant that needs more frequent monitoring. Moreover, this study reveals that during biodegradation of benzophenone in river water, the transformation product 4-OH-BP is formed which contain structural alerts for estrogenic activity. By using yeast-based reporter gene assays, this study provides bio-equivalents of 9 BPs, 4-OH-BP, 2,3,4-tri-OH-BP, 4-cresol and benzoate and complements the existing structure-activities relationships of BPs and their degradation products.


Subject(s)
Receptors, Androgen , Water Pollutants, Chemical , Humans , Chromatography, Liquid/methods , Water , Tandem Mass Spectrometry/methods , Estrogens/analysis , Saccharomyces cerevisiae , Benzophenones/chemistry , Sunscreening Agents/chemistry , Water Pollutants, Chemical/chemistry
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 1061-1074, 2023 05.
Article in English | MEDLINE | ID: mdl-36633617

ABSTRACT

Analysis of illicit drugs, medicines, and pathogens in wastewater is a powerful tool for epidemiological studies to monitor public health trends. The aims of this study were to (i) assess spatial and temporal trends of population-normalized mass loads of illicit drugs and nicotine in raw wastewater in the time of regulations against SARS-CoV-2 infections (2020-21) and (ii) find substances that are feasible markers for characterizing the occurrence of selected drugs in wastewater. Raw sewage 24-h composite samples were collected in catchment areas of 15 wastewater treatment plants (WWTPs) in urban, small-town, and rural areas in Germany during different lockdown phases from April 2020 to December 2021. Parent substances (amphetamine, methamphetamine, MDMA, carbamazepine, gabapentin, and metoprolol) and the metabolites of cocaine (benzoylecgonine) and nicotine (cotinine) were measured. The daily discharge of WWTP influents were used to calculate the daily load (mg/day) normalized by population equivalents (PE) in drained catchment areas (in mg/1,000 persons/day). A weekend trend for illicit drugs was visible with higher amounts on Saturdays and Sundays in larger WWTPs. An influence of the regulations to reduce SARS-CoV-2 infections such as contact bans and border closures on drug consumption has been proven in some cases and refuted in several. In addition, metoprolol and cotinine were found to be suitable as marker substances for the characterization of wastewater. A change in drug use was visible at the beginning of the SARS-CoV-2 crisis. Thereafter from mid-2020, no obvious effect was detected with regard to the regulations against SARS-CoV-2 infections on concentration of drugs in wastewater. Wastewater-based epidemiology is suitable for showing changes in drug consumption during the COVID-19 lockdown.


Subject(s)
COVID-19 , Illicit Drugs , Substance-Related Disorders , Water Pollutants, Chemical , Humans , Wastewater , Cities , Cotinine/analysis , Nicotine/analysis , Metoprolol , COVID-19/epidemiology , SARS-CoV-2 , Communicable Disease Control , Substance-Related Disorders/epidemiology , Amphetamine , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 857(Pt 2): 159358, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36240928

ABSTRACT

Wastewater-based epidemiology provides a conceptual framework for the evaluation of the prevalence of public health related biomarkers. In the context of the Coronavirus disease-2019, wastewater monitoring emerged as a complementary tool for epidemic management. In this study, we evaluated data from six wastewater treatment plants in the region of Saxony, Germany. The study period lasted from February to December 2021 and covered the third and fourth regional epidemic waves. We collected 1065 daily composite samples and analyzed SARS-CoV-2 RNA concentrations using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Regression models quantify the relation between RNA concentrations and disease prevalence. We demonstrated that the relation is site and time specific. Median loads per diagnosed case differed by a factor of 3-4 among sites during both waves and were on average 45 % higher during the third wave. In most cases, log-log-transformed data achieved better regression performance than non-transformed data and local calibration outperformed global models for all sites. The inclusion of lag/lead time, discharge and detection probability improved model performance in all cases significantly, but the importance of these components was also site and time specific. In all cases, models with lag/lead time and log-log-transformed data obtained satisfactory goodness-of-fit with adjusted coefficients of determination higher than 0.5. Back-estimation of testing efficiency from wastewater data confirmed state-wide prevalence estimation from individual testing statistics, but revealed pronounced differences throughout the epidemic waves and among the different sites.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Wastewater/analysis , COVID-19/epidemiology , RNA, Viral , Prevalence , Biomarkers
5.
Article in English | MEDLINE | ID: mdl-36293955

ABSTRACT

Dependent on the excretion pattern, wastewater monitoring of viruses can be a valuable approach to characterizing their circulation in the human population. Using polyethylene glycol precipitation and reverse transcription-quantitative PCR, the occurrence of RNA of SARS-CoV-2 and influenza viruses A/B in the raw wastewater of two treatment plants in Germany between January and May 2022 was investigated. Due to the relatively high incidence in both exposal areas (plant 1 and plant 2), SARS-CoV-2-specific RNA was determined in all 273 composite samples analyzed (concentration of E gene: 1.3 × 104 to 3.2 × 106 gc/L). Despite a nation-wide low number of confirmed infections, influenza virus A was demonstrated in 5.2% (concentration: 9.8 × 102 to 8.4 × 104 gc/L; plant 1) and in 41.6% (3.6 × 103 to 3.0 × 105 gc/L; plant 2) of samples. Influenza virus B was detected in 36.0% (7.2 × 102 to 8.5 × 106 gc/L; plant 1) and 57.7% (9.6 × 103 to 2.1 × 107 gc/L; plant 2) of wastewater samples. The results of the study demonstrate the frequent detection of two primary respiratory viruses in wastewater and offer the possibility to track the epidemiology of influenza by wastewater-based monitoring.


Subject(s)
COVID-19 , Orthomyxoviridae , Viruses , Humans , SARS-CoV-2/genetics , Wastewater , Cities , COVID-19/epidemiology , RNA , Orthomyxoviridae/genetics , Polyethylene Glycols , RNA, Viral/genetics
6.
Emerg Infect Dis ; 28(1): 148-156, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34932450

ABSTRACT

We compared case definitions for suspected, probable, and confirmed coronavirus disease (COVID-19), as well as diagnostic testing criteria, used in the 25 countries with the highest reported case counts as of October 1, 2020. Of the identified countries, 56% followed World Health Organization (WHO) recommendations for using a combination of clinical and epidemiologic criteria as part of the suspected case definition. A total of 75% of identified countries followed WHO recommendations on using clinical, epidemiologic, and diagnostic criteria for probable cases; 72% followed WHO recommendations to use PCR testing to confirm COVID-19. Finally, 64% of countries used testing eligibility criteria at least as permissive as WHO. We observed marked heterogeneity in testing eligibility requirements and in how countries define a COVID-19 case. This heterogeneity affects the ability to compare case counts, transmission, and vaccine effectiveness, as well as estimates derived from case surveillance data across countries.


Subject(s)
COVID-19 , Vaccine Efficacy , Diagnostic Techniques and Procedures , Humans , SARS-CoV-2 , World Health Organization
8.
Environ Int ; 140: 105733, 2020 07.
Article in English | MEDLINE | ID: mdl-32353669

ABSTRACT

A comprehensive monitoring of a broad set of antibiotics in the final effluent of wastewater treatment plants (WWTPs) of 7 European countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway) was carried out in two consecutive years (2015 and 2016). This is the first study of this kind performed at an international level. Within the 53 antibiotics monitored 17 were detected at least once in the final effluent of the WWTPs, i.e.: ciprofloxacin, ofloxacin, enrofloxacin, orbifloxacin, azithromycin, clarithromycin, sulfapyridine, sulfamethoxazole, trimethoprim, nalidixic acid, pipemidic acid, oxolinic acid, cefalexin, clindamycin, metronidazole, ampicillin, and tetracycline. The countries exhibiting the highest effluent average concentrations of antibiotics were Ireland and the southern countries Portugal and Spain, whereas the northern countries (Norway, Finland and Germany) and Cyprus exhibited lower total concentration. The antibiotic occurrence data in the final effluents were used for the assessment of their impact on the aquatic environment. Both, environmental predicted no effect concentration (PNEC-ENVs) and the PNECs based on minimal inhibitory concentrations (PNEC-MICs) were considered for the evaluation of the impact on microbial communities in aquatic systems and on the evolution of antibiotic resistance, respectively. Based on this analysis, three compounds, ciprofloxacin, azithromycin and cefalexin are proposed as markers of antibiotic pollution, as they could occasionally pose a risk to the environment. Integrated studies like this are crucial to map the impact of antibiotic pollution and to provide the basis for designing water quality and environmental risk in regular water monitoring programs.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/analysis , Environmental Monitoring , Europe , Finland , Germany , Ireland , Norway , Portugal , Spain , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
9.
Mil Med ; 185(1-2): e28-e34, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31247105

ABSTRACT

INTRODUCTION: Lyme disease incidence rates have steadily increased since its official recognition in 1975. Since exposure to Lyme is associated with activities conducted in and around tick-habitats including tall grass, shrubs, deciduous forest, and leaf litter, it has been suggested that service members, who are thought to spend higher amounts of time in these habitats due to training requirements, may have higher risk for exposure. Specifically, this study looks at service member and family member exposure to Ixodes scapularis, the vector for Lyme in the Northeastern and Midwestern United States. While literature pertaining to occupational and military specific exposures to Lyme vectors have attempted to quantify the possible elevated risk of Lyme disease for service members, thus far, studies have not consistently confirmed that service members are at a greater risk than family members. MATERIALS AND METHODS: This cross-sectional study looks at cases of Lyme disease at Keller Army Community Hospital (KACH) on the West Point Military Reservation in New York during Fiscal Year (FY) 2016 through FY2018. Lyme cases were pulled from Military Health System Mart using current ICD-10-CM codes for Lyme related conditions (A69.20 and A69.29). In total, 144 cases were considered for the analysis. Totaling all service members and family members enrolled at KACH over the three-year period account for 35,526 person-years. Period prevalence, attributable risk percentage, population attributable risk percentage, and corresponding 95% confidence intervals were calculated for service members and family member categories. This study was conducted on human subject research according to 32CFR219 and meets the requirements of exempt status under 32CFR219.101(b)(4) because it is a cross-sectional study on existing de-identified patient data. RESULTS: During FY2016-2018, service members accounted for 63 cases of Lyme totaling 21,595 person-years with a period prevalence of 292 cases per 100,000 (219.8, 363.7). Family members accounted for 81 cases with a total of 13,931 person-years with a period prevalence of 581 cases per 100,000 (455.2, 707.7). The percentage of attributable risk during the three-year period credited to military status is -99.30% (-145.69%, -52.91%). The population attributable risk percentage is -43.4%. CONCLUSIONS: While this study was unable to capture the military specific occupational exposure to I. scapularis, it does show a difference in period prevalence between service members and family members with the family members being at higher risk to contract Lyme instead of service members as is commonly suggested in the literature. Additional studies may be conducted to see if this holds true across service member Military Occupational Specialties as a proxy for occupational exposure. Similar studies should be conducted at military installations situated in Lyme endemic areas to determine if these results are comparable across the military or specific to West Point. Future research should attempt to identify all the service member protective factors against Lyme with attribution to permethrin-treated uniforms and other military interventions designed to defend soldiers against vector-borne diseases.


Subject(s)
Lyme Disease , Animals , Cross-Sectional Studies , Humans , Lyme Disease/epidemiology , Midwestern United States , New York , Prevalence
10.
MSMR ; 26(4): 2-6, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31026171

ABSTRACT

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to healthcare providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal--the white-tailed deer.


Subject(s)
Deer , Ecosystem , Animals , Ixodes , Lyme Disease/prevention & control , Lyme Disease/transmission , New York/epidemiology , Spatial Analysis , United States
11.
Environ Pollut ; 242(Pt A): 164-170, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29980034

ABSTRACT

Antibiotic resistant bacteria are a threat to human life. Recently, sewers have been identified as potential reservoirs. The intermittent injection of sewage into adjacent surface waters is inevitable, due to capacity limitations of the urban drainage system. Information regarding the effect to natural freshwater biofilms (NFB) due to the intermittent contaminations are scarce. Therefore, a fundamental screening is necessary. In April, we placed NFB-attachment constructions in a brook upstream and downstream from urban drainage overflow constructions. In meanwhile two sampling campaigns were conducted. The sewage and the brook water were collected to gather information about antibiotic background exposure of ciprofloxacin (CIP), clarithromycin (CLA) and doxycycline (DOX). Six months later we experimentally determined the oxygen uptake rate (OUR) of the NFB-communities after a 24 h lasting exposure with additionally dosed antibiotics. Concentrations of 0.1, 1.0 and 10.0 mg L-1 were selected. CIP, CLA and DOX were individually dosed, and also in mixtures. The mean antibiotic background concentration in sewage was in a range of 575.5-1289.1 ng L-1, which mainly exceeded the concentrations published in literature. The determined mean concentration in the brook was in a range of 4.6-539.0 ng L-1. The first significant inhibition of the OUR with individually dosed antibiotics started mainly at a concentration of 1.0 mg L-1. Antibiotics in a mixture with concentrations of 0.1 and 1.0 mg L-1 were as effective as single dosed antibiotics with a concentration of 10.0 mg L-1. The increased antibiotic tolerance and resistance of NFB-communities downstream of the combined sewer overflow (CSO) structure was a consequence of a severe impact due to urban drainage overflows. Hence, NFB-communities downstream of CSO-constructions are hot spots of antibiotic tolerant and resistant subpopulations and access restrictions should be announced, if an infection risk is present.


Subject(s)
Anti-Bacterial Agents/metabolism , Biofilms , Drug Resistance, Microbial/genetics , Environmental Monitoring , Water Microbiology , Water Pollution/analysis , Bacteria/drug effects , Ciprofloxacin/pharmacology , Fresh Water , Sewage/chemistry , Water Pollution/statistics & numerical data
12.
Environ Pollut ; 241: 339-350, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29843016

ABSTRACT

In this study, degradation affinities of 14 antibiotics and one metabolite were determined in batch experiments. A modelling framework was applied to decrypt potential ranges of abiotic, biotic and photolytic degradation coefficients. In detail, we performed batch experiments with three different sewages in the dark at 7 °C and 22 °C. Additionally, we conducted further batch experiments with artificial irradiation and different dilutions of the sewage at 30 °C - de novo three different sewages were used. The batch experiments were initially spiked with a stock solution with 14 antibiotics and one metabolite to increase background concentrations by 1 µg L-1 for each compound. The final antibiotic concentrations were sub-inhibitory with regard to sewage bacteria. The here presented modelling framework based on the Activated Sludge Model No. 3 in combination with adsorption and desorption processes. The model was calibrated with monitored standard sewage compounds before antibiotic degradation rates were quantified. The model decrypted ranges of abiotic, biotic and photolytic degradation coefficients. In detail, six antibiotics were not abiotic degradable at 7 °C, five antibiotics not at 22 °C and only 2 antibiotics at 30 °C. Finally, nine antibiotics were not significantly biodegradable at 7 °C and 22 °C. The model determined the link between adsorption characteristics and biodegradation rates. In detail, the rate was significantly affected by the bio-solid partition coefficient and the duration until adsorption was balanced. All antibiotics and the metabolite were photolytic degradable. In general, photolytic degradation was the most efficient elimination pathway of presented antibiotics except for the given metabolite and penicillin antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , Models, Chemical , Photochemical Processes , Water Pollutants, Chemical/chemistry , Adsorption , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/metabolism , Bacteria , Biodegradation, Environmental , Photolysis , Sewage/microbiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
13.
Environ Pollut ; 239: 638-647, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29709835

ABSTRACT

In this study, 14 antibiotics and one metabolite were determined in sewages and size-dependent sewer sediments at three sampling sites in the city of Dresden, Germany. Adsorption and desorption experiments were conducted with fractionated sediments. All antibiotics and the metabolite investigated were determined in the sewages; 9 of 14 antibiotics and the metabolite were adsorbed to sewer sediments. The adsorbed antibiotic loads in ng of antibiotic per g of sediment correlated with antibiotic concentrations in ng of antibiotic per litre of sewage. The size fractions <63 µm, 63-100 µm and 100-200 µm had significantly higher loads of adsorbed antibiotics than bigger size fractions. In general, the adsorbed load decreased with an increasing size fraction, but size fractions >200 µm had similar levels of adsorbed antibiotic loads. An antibiotic-specific adsorption coefficient, normalized to organic content, was calculated: four antibiotics exceeded 10.0 L g-1, three antibiotics fell below 1.0 L g-1 and all residual antibiotics and the metabolite were in the range of 1.0-10.0 L g-1. The adsorbed antibiotic load and the organic matter increased with time, generally. The mineral composition had a minor effect on the adsorption coefficients. Desorption dynamics of five antibiotics and the metabolite were quantified. Regardless of the size fraction, the predominant part of the equilibrium antibiotic concentration was desorbed after 10 min. The calculated desorption distribution coefficient indicated adsorption as irreversible at the pH investigated (7.5 ±â€¯0.5).


Subject(s)
Anti-Bacterial Agents/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Germany , Models, Chemical , Sewage/chemistry
14.
Sci Total Environ ; 538: 779-88, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26340581

ABSTRACT

Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for digesters. Hence, future investigations have to address antibiotic's temporal dynamics during the sludge treatment to decide whether or not the widely reported standard deviations of sludge concentrations reflect realistic fluctuations.


Subject(s)
Anti-Bacterial Agents/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Germany
15.
Sci Total Environ ; 532: 762-70, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26124013

ABSTRACT

The present study determines removal rates (RR) of 56 pharmaceuticals and metabolites, respectively, in an urban sewage treatment plant using mass flow analysis by comparing influent and effluent loads over a consecutive ten-day monitoring period. Besides well investigated compounds like carbamazepine and metoprolol, less researched targets, such as topiramate, pregabalin, telmisartan, and human metabolites of pharmaceuticals were included. Another aim was to determine the ratio of pharmaceuticals and corresponding metabolites in raw wastewater. Valsartan and gabapentin were detected at the highest average concentrations in influent (c(val) = 29.7 (± 8.1) µg/L, c(gab) = 13.2 (± 3.3) µg/L) and effluent (c(val) = 22.1 (± 5.1) µg/L, c(gab) = 12.1 (± 2.6) µg/L) samples. The comparison of mass loads in influent and effluent showed a significant removal (p<0.1) for 20 compounds but only enalapril, eprosartan, losartan, pregabalin, and quetiapine were removed from the aqueous phase by more than 50%. Another 20 compounds were determined without significant difference and for five compounds (clindamycin, lamotrigine, oxcarbazepine, O-desmethyl venlafaxine, triamterene), a significant higher mass load in the effluent than in the influent was observed. It has to be noticed that metabolites like 10,11-dihydro-10-hydroxy carbamazepine (MHD) are found in higher mass loads than the corresponding parent compound in the sewage samples. Furthermore, metabolites and parent compound behave differently in the sewage treatment process. While MHD (RR = 15.1%) was detected with lower mass load in the effluent than in the influent, oxcarbazepine (RR = -73.2%) showed the contrary pattern. When comparing expected and measured ratios of parent compound and metabolite in raw sewage, citalopram/N-desmethyl citalopram for example, showed good results. However, a major problem exists due to insufficient data regarding metabolism and excretion of many pharmaceuticals. This complicates the prediction of relevant metabolites and further efforts are needed to overcome this problem.


Subject(s)
Environmental Monitoring , Pharmaceutical Preparations/analysis , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/analysis
16.
Article in English | MEDLINE | ID: mdl-25841203

ABSTRACT

Based on regional prescription data several pharmaceuticals with variable amounts of prescription and corresponding metabolites were selected and analyzed in influent and effluent samples of the sewage treatment plant (STP) in Dresden, Germany. Pharmaceuticals of the following most prescribed therapeutic groups were chosen: antibiotics, antifungals, anticonvulsants, antipsychotics, antidepressants, and cardiovascular active compounds like beta blockers and angiotensin-converting enzyme inhibitors. To analyze the selected compounds, a multi-target method was developed and applied to 24-h composite wastewater samples for three single days in May and June 2014. The method was based on a cleanup of a sample with a volume of 1mL using solid phase extraction followed by a high performance liquid chromatography coupled to a tandem mass spectrometer. Analytes were separated in a 15min chromatographic separation and quantified using 23 Internal Standards and a calibration curve in 40-fold diluted blank urine. The limit of quantification varied between 50 and 200ng/L and for all analytes good accuracy and precision as well as linearity for the calibration curve with the correlation coefficient R(2) higher than 0.99 was reached. A total of 41 and 40 of the selected 55 analytes were detected and quantified in the influent and effluent samples of the studied STP, respectively. Valsartan was the compound with the highest maximum concentration in influent (27.1µg/L) and effluent (15.7µg/L). Furthermore, analytes like bezafibrate, candesartan, carbamazepine, gabapentin, metoprolol, levetiracetam, pregabalin and telmisartan as well as the metabolite O-desmethyl venlafaxine were detectable in influent and effluent samples, respectively, with a concentration higher than 1µg/L.


Subject(s)
Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations/analysis , Sewage/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Cities , Linear Models , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/methods
17.
Water Res ; 76: 19-32, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25776917

ABSTRACT

Predicting the input loads of antibiotics to wastewater treatment plants (WWTP) using certain input data (e.g. prescriptions) is a reasonable method if no analytical data is available. Besides the spatiotemporal uncertainties of the projection itself, only a few studies exist to confirm the suitability of required excretion data from literature. Prescription data with a comparatively high resolution and a sampling campaign covering 15 months were used to answer the question of applicability of the prediction approach. As a result, macrolides, sulfamethoxazole and trimethoprim were almost fully recovered close to 100% of the expected input loads. Nearly all substances of the beta-lactam family exhibit high elimination rates during the wastewater transport in the sewer system with a low recovery rate at the WWTP. The measured input loads of cefuroxime, ciprofloxacin and levofloxacin fluctuated greatly through the year which was not obvious from relatively constant prescribed amounts. The latter substances are an example that available data are not per se sufficient to monitor the actual release into the environment. Furthermore, the extensive data pool of this study was used to calculate the necessary number of samples to determine a representative annual mean load to the WWTP. For antibiotics with low seasonality and low input scattering a minimum of about 10 samples is required. In the case of antibiotics exhibiting fluctuating input loads 30 to 40 evenly distributed samples are necessary for a representative input determination. As a high level estimate, a minimum number of 20-40 samples per year is proposed to reasonably estimate a representative annual input load of antibiotics and other micropollutants.


Subject(s)
Anti-Bacterial Agents/analysis , Pharmaceutical Preparations/analysis , Wastewater/analysis , Water Purification , Environmental Monitoring/methods , Sample Size , Seasons , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
18.
Aquat Toxicol ; 157: 141-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25456228

ABSTRACT

Transient exposure of brown trout embryos from fertilization until hatch (70 days) to 17ß-estradiol (E2) was investigated. Embryos were exposed to 3.8 and 38.0 ng/L E2 for 2h, respectively, under four scenarios: (A) exposure once at the day of fertilization (0 days post-fertilization, dpf), (B) once at eyeing stage (38 dpf), (C) weekly exposure until hatch or (D) bi-weekly exposure until hatch. Endpoints to assess estrogen impact on embryo development were fertilization success, chronological sequence of developmental events, hatching process, larval malformations, heart rate, body length and mortality. Concentration-dependent acceleration of development until median hatch was observed in all exposure scenarios with the strongest effect observed for embryos exposed once at 0 dpf. In addition, the hatching period was significantly prolonged by 4-5 days in groups receiving single estrogen exposures (scenarios A and B). Heart rate on hatching day was significantly depressed with increasing E2 concentrations, with the strongest effect observed for embryos exposed at eyeing stage. Estrogenic exposure at 0 dpf significantly reduced body length at hatch, not depending on whether this was a single exposure or the first of a series (scenarios A and D). The key finding is that even a single, transient E2 exposure during embryogenesis had significant effects on brown trout development. Median hatch, hatching period, heart rate and body length at hatch were found to be highly sensitive biomarkers responsive to estrogenic exposure during embryogenesis. Treatment effects were observable only at the post-hatch stage.


Subject(s)
Embryonic Development/drug effects , Environmental Exposure , Estradiol/toxicity , Trout/embryology , Water Pollutants, Chemical/toxicity , Animals
19.
Article in English | MEDLINE | ID: mdl-25171505

ABSTRACT

A rapid analytical method was developed for the application of a long-term monitoring (>one year) of the most prescribed and often in hospitals used antibiotics in diverse wastewaters of an urban sewage treatment plant (STP). Additionally to the selected multi-class antibiotics amoxicillin, penicillin V and piperacillin (penicillins), cefotaxime and cefuroxime (cephalosporins), azithromycin, clarithromycin and roxithromycin (macrolids), ciprofloxacin and levofloxacin-ofloxacin (fluoroquinolones), clindamycin (lincosamide), doxycycline (tetracycline), sulfamethoxazole (sulfonamide) and trimethoprim (dihydrofolate reductase inhibitor), the bioactive metabolite clindamycin-sulfoxide, the reserve antibiotic vancomycin (glycopeptide) and as tracer of the STP the anticonvulsant carbamazepine and the antifungal fluconazole were involved. The analytical method combines a low-sample-volume solid phase extraction (SPE), followed by a chromatographic separation using a reversed phase (RP) and hydrophilic interaction liquid chromatography (HILIC) technique, respectively, coupled to a triple quadrupole mass spectrometer. Detection was performed with multiple reaction monitoring (MRM) measured with positive electrospray ionization (ESI+). The extraction efficiency of different SPE cartridges and optimized pH-values of the preparation procedure were tested. Finally, the extraction of antibiotics was realized with the Oasis HLB cartridge and a pH adjustment at 3.5. An external calibration curve in diluted blank urine was used for quality control of the sample set of daily composite samples of the STP for the duration of one year monitoring. The squared coefficient of determination (r(2)) in the concentration range (20-20,000ng/L or 100-100,000ng/L) of the calibration curves for the method was higher than 0.99 for all determined substances. The limit of quantification (LoQ) ranged between 0.8ng/L (azithromycin) and 245.1ng/L (vancomycin). Furthermore, a standard addition was used for quantification in wastewater samples. The process efficiencies ranged from 20% (doxycycline) to 134% (cefuroxime) in influent samples and from 31% (doxycycline) to 171% (cefuroxime) in effluent samples of the STP. All selected substances have been found in wastewater samples. Cefuroxime, doxycycline, levofloxacin, piperacillin, sulfamethoxazole and carbamazepine showed highest concentrations up to 6.2µg/L.


Subject(s)
Anti-Bacterial Agents/analysis , Chromatography, Liquid/methods , Sewage/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Linear Models , Reproducibility of Results , Sensitivity and Specificity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
20.
Environ Sci Pollut Res Int ; 21(20): 11764-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24310902

ABSTRACT

In a research project on risk management of harmful substances in water cycles, clindamycin and 12 further antibiotics were determined in different sewage samples. In contrast to other antibiotics, an increase of the clindamycin concentration in the final effluent in comparison to the influent of the sewage treatment plant (STP) was observed. A back transformation from the main metabolite clindamycin sulfoxide to clindamycin during the denitrification process has been discussed. Therefore, the concentration of this metabolite was measured additionally. Clindamycin sulfoxide was stable in the STP and the assumption of back transformation of the metabolite to clindamycin was confuted. To explain the increasing clindamycin concentration in the STP, the ratio of clindamycin sulfoxide to clindamycin was observed. The ratio increased in dry spells with concentrated samples and with long dwell time in the sewer system. A short hydraulic retention in waste water system and diluted samples in periods of extreme rainfall lead to a lower ratio of clindamycin sulfoxide to clindamycin concentration. A plausible explanation of this behavior could be that clindamycin was adsorbed strongly to a component of the sewage during this long residence time and in the STP, clindamycin was released. In the common sample preparation in the lab, clindamycin was not released. Measurements of clindamycin and clindamycin sulfoxide in the influent and effluent of STP is advised for sewage monitoring.


Subject(s)
Clindamycin/analogs & derivatives , Clindamycin/analysis , Clindamycin/metabolism , Environmental Monitoring/methods , Sewage/chemistry , Clindamycin/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...