Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Article in English | MEDLINE | ID: mdl-33872655

ABSTRACT

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Subject(s)
Antigens, Neoplasm/genetics , Exome Sequencing , Genetic Predisposition to Disease , Primary Immunodeficiency Diseases/immunology , Virus Diseases/genetics , Antigens, Neoplasm/immunology , Child , Child, Preschool , Female , Humans , Infant , Inflammation/diagnostic imaging , Inflammation/genetics , Inflammation/immunology , Male , Primary Immunodeficiency Diseases/diagnostic imaging , Primary Immunodeficiency Diseases/genetics , Virus Diseases/diagnostic imaging , Virus Diseases/immunology
2.
Clin Genet ; 99(6): 789-801, 2021 06.
Article in English | MEDLINE | ID: mdl-33598926

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) catalyze the first step of protein biosynthesis (canonical function) and have additional (non-canonical) functions outside of translation. Bi-allelic pathogenic variants in genes encoding ARSs are associated with various recessive mitochondrial and multisystem disorders. We describe here a multisystem clinical phenotype based on bi-allelic mutations in the two genes (FARSA, FARSB) encoding distinct subunits for tetrameric cytosolic phenylalanyl-tRNA synthetase (FARS1). Interstitial lung disease with cholesterol pneumonitis on histology emerged as an early characteristic feature and significantly determined disease burden. Additional clinical characteristics of the patients included neurological findings, liver dysfunction, and connective tissue, muscular and vascular abnormalities. Structural modeling of newly identified missense mutations in the alpha subunit of FARS1, FARSA, showed exclusive mapping to the enzyme's conserved catalytic domain. Patient-derived mutant cells displayed compromised aminoacylation activity in two cases, while remaining unaffected in another. Collectively, these findings expand current knowledge about the human ARS disease spectrum and support a loss of canonical and non-canonical function in FARS1-associated recessive disease.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Lung Diseases, Interstitial/genetics , Lung/pathology , Mutation/genetics , Phenylalanine-tRNA Ligase/genetics , Adolescent , Alleles , Child , Child, Preschool , Female , Genes, Recessive/genetics , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype
3.
Am J Hum Genet ; 103(1): 100-114, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29979980

ABSTRACT

The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Lung Diseases/genetics , Mutation/genetics , Adolescent , Alleles , Charcot-Marie-Tooth Disease/genetics , Child, Preschool , Female , Genes, Recessive/genetics , Heterozygote , Humans , Infant , Male , Protein Biosynthesis/genetics
4.
Orphanet J Rare Dis ; 13(1): 42, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29580292

ABSTRACT

BACKGROUND: Hermansky-Pudlak syndrome (HPS), a hereditary multisystem disorder with oculocutaneous albinism, may be caused by mutations in one of at least 10 separate genes. The HPS-2 subtype is distinguished by the presence of neutropenia and knowledge of its pulmonary phenotype in children is scarce. METHODS: Six children with genetically proven HPS-2 presented to the chILD-EU register between 2009 and 2017; the data were collected systematically and imaging studies were scored blinded. RESULTS: Pulmonary symptoms including dyspnea, coughing, need for oxygen, and clubbing started 3.3 years before the diagnosis was made at the mean age of 8.83 years (range 2-15). All children had recurrent pulmonary infections, 3 had a spontaneous pneumothorax, and 4 developed scoliosis. The frequency of pulmonary complaints increased over time. The leading radiographic pattern was ground-glass opacities with a rapid increase in reticular pattern and traction bronchiectasis between initial and follow-up Computer tomography (CT) in all subjects. Honeycombing and cysts were newly detectable in 3 patients. Half of the patients received a lung biopsy for diagnosis; histological patterns were cellular non-specific interstitial pneumonia, usual interstitial pneumonia-like, and desquamative interstitial pneumonia. CONCLUSIONS: HPS-2 is characterized by a rapidly fibrosing lung disease during early childhood. Effective treatments are required.


Subject(s)
Hermanski-Pudlak Syndrome/pathology , Lung/pathology , Pulmonary Fibrosis/pathology , Adolescent , Child , Child, Preschool , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...