Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 123(22): 5337-47, 2001 Jun 06.
Article in English | MEDLINE | ID: mdl-11457397

ABSTRACT

The flash-photolysis time-resolved microwave conductivity technique (FP-TRMC) has been used to investigate the nature of the relaxed S(1) state of 9,9'-bianthryl (AA), 10-cyano-9,9'-bianthryl (CAA), and 10,10'-dicyano-9,9'-bianthryl (CAAC). Changes in both the real, Deltaepsilon' (dielectric constant), and imaginary, Deltaepsilon' ' (dielectric loss), components of the complex permittivity have been measured. The dielectric loss transients conclusively demonstrate the dipolar nature of S(1) for all three compounds in the pseudopolar solvents benzene and 1,4-dioxane, and even in the nonpolar solvents n-hexane and cyclohexane. The required symmetry breaking is considered to result from density and structural fluctuations in the solvent environment. The dipole relaxation times for AA (CAAC) are ca. 2 ps for the alkanes and 7.9 (5.3) and 14 (14) ps for benzene and dioxane, respectively. The time scale of dipole relaxation for the symmetrical compounds is much shorter than that for rotational diffusion and is attributed to intramolecular, flip-flop dipole reversal via a neutral excitonic state. The dipole moment of the transient dipolar state is estimated to be ca. 8 D, that is much lower than the value of ca. 20 D determined from the solvatochromic shifts in the fluorescence in intermediate to highly polar solvents which corresponds to close to complete charge separation. For the asymmetric compound, CAA, a dipole moment close to 20 D is found in all solvents, including n-hexane. Dipole relaxation in this case occurs on a time scale of several hundred picoseconds and is controlled mainly by diffusional rotation of the molecules. The mechanism and kinetics of formation of the dipolar excited states are discussed in the light of these results.

2.
Chemistry ; 6(16): 2948-59, 2000 Aug 18.
Article in English | MEDLINE | ID: mdl-10993256

ABSTRACT

The photophysical properties of a bicyclohexylidene (1DA) and a bicyclohexyl (2DA) substituted with an anilino electron donor and a dicyanoethylene electron acceptor have been studied. Quenching of local donor emission is observed for these compounds as well as quenching of the "pseudo-local" acceptor emission. Transient absorption spectra show dialkylanilino-type radical-cation and dicyanoethylene-type radical-anion absorptions. These results show that intramolecular charge separation takes place in 1DA and 2DA. This was corroborated by time-resolved microwave conductivity measurements from which large excited-state dipole moments were found for both 1DA and 2DA. Time-resolved fluorescence spectroscopy revealed that in the charge-separated state in cyclohexane for 2DA, molecular folding takes place on a nanosecond timescale. For 1DA in cyclohexane, either charge separation takes place in a (fully) folded conformation or very rapid (subnanosecond timescale) folding takes place subsequent to charge separation. In addition to this difference in conformational behavior, the presence of the exocyclic double bond between the cyclohexyl-type rings results in efficient quenching of the anilino donor triplet state and acceleration of the charge recombination rate by a factor of 20.

SELECTION OF CITATIONS
SEARCH DETAIL
...