Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37447241

ABSTRACT

Brugmansia suaveolens Bercht. & J. Presl has been widely used due to the presence of different bioactive compounds. This review summarizes the latest advances and perspectives of the B. suaveolens plant species; it is a systematic literature review on aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology as therapeutic potential. In addition, 120 compounds are described, including alkaloids, flavonoids, terpenoids, steroids, amino acids, aromatics, and aliphatics. As for the therapeutic potential, it is described in extracts and compounds in the antitumor, anti-inflammatory, antioxidant, antimicrobial, antispasmodic, anticoagulant, and analgesic aspects, as well as the effects on the central nervous system. The toxicity of the genus stands out, especially the potential for organ toxicity. Therefore, this review evidenced the knowledge related to the traditional use based on the scientific research of Brugmansia suaveolens, highlighting an overview of bioactive compounds and biological and toxicological activities in order to provide a scientific basis for future studies on the value of this species for the development of new natural products.


Subject(s)
Alkaloids , Brugmansia , Phytotherapy , Medicine, Traditional , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Ethnopharmacology
2.
Nat Prod Res ; 37(18): 3177-3183, 2023.
Article in English | MEDLINE | ID: mdl-36398845

ABSTRACT

Brugmansia suaveolens Bercht. & J. Presl represents a promising source of new active molecules. Therefore, the aim of the study is to outline the profile of secondary metabolites and their therapeutic potential and in vitro safety properties. The identification of substances was carried out through the chromatographic profile, while the evaluation of therapeutic use was conducted through in vitro biological assays of antioxidant and antimicrobial activity and quantification of the total phenolic content. The safety of the extracts was evaluated using a cytotoxicity assay. The results found revealed the presence of different secondary metabolites, such as flavonoids and alkaloids. Biological assays showed promising antimicrobial activity in gram-negative strains. Regarding safety, greater cytotoxicity is observed in macrophage cells. The study demonstrated that the extracts are potent for therapeutic use, aiming at the development of a phytoproduct for topical use, providing an innovative, relevant and significant character for future research.

3.
J Photochem Photobiol B ; 211: 112010, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32890891

ABSTRACT

Nanotechnology, when applied to PDT's, allows the encapsulation of ZnPc in nanocarriers, producing thus nanoemulsions that permit the use of ZnPc as photosensitizers. The Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA) are microorganisms present in biofilms which can cause resistant endodontic infections. The objective of this work is the development and characterization of clove essential oil nanoemulsions containing ZnPc. The formulations were developed according to factorial experimental planning and characterized by the determination of the mean drop size, Polydispersity Index (PdI), content, organoleptic characteristics, stability, morphology, cytotoxicity in the dark and evaluation of the photobiological activity. The experimental planning was able to indicate the maximum amount of ZnPc that could be encapsulated in the nanoemulsion while maintaining droplet size <50 nm and PdI < 0.2. The surface plots for the response variables indicated a robust region for the combination of Pluronic® F-127 and clove oil factors. The result of this study was the choice of the nanoemulsion containing ZnPc solution at 5%, clove oil at 5%, Pluronic® F-127 at 10% and will be codified as ZnPc-NE. The nanoemulsion presented a mean diameter of 30.52 nm, PDI < 0.2 and a concentration of 17.5 µg/mL, as well as stability at room temperature for 180 days. TEM showed that the drops are spherical with nanometric size, which corroborates the results of dynamic light scattering. Concerning the photobiological activity, the ZnPc-NE exhibited MIC 1.09 µg/mL for Enterococcus faecalis and 0.065 µg/mL for MRSA (Methicillin-resistant Staphylococcus aureus). ZnPc-NE showed higher photobiological activity than free ZnPc. Besides, cytotoxicity studies showed that blank-NE (nanoemulsions without PS) showed good antimicrobial activity. Thus, clove oil nanoemulsion is an excellent nanocarrier to promote the photobiological activity of the ZnPc against pathogenic microorganisms.


Subject(s)
Anti-Infective Agents/chemistry , Emulsions/chemistry , Indoles/chemistry , Nanocapsules/chemistry , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Administration, Oral , Anti-Infective Agents/pharmacology , Cell Survival/drug effects , Clove Oil/chemistry , Drug Compounding , Enterococcus faecalis/drug effects , Humans , Indoles/pharmacology , Isoindoles , Methicillin-Resistant Staphylococcus aureus/drug effects , Organometallic Compounds/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Poloxamer/chemistry , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...