Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 23(3)2023 May 01.
Article in English | MEDLINE | ID: mdl-37220089

ABSTRACT

Mexican fruit fly (Anastrepha ludens (Loew)) (Diptera: Tephritidae) represents a major threat to fruit production in the Western Hemisphere. Sterile insect technique is used to suppress and eradicate wild populations. Success of this control method necessitates weekly production of hundreds of millions of flies, their sterilization by irradiation, and their aerial release. Diet needed to produce large fly numbers are conducive to the spread of bacteria. Pathogenic bacteria were isolated from 3 rearing facilities and from multiple sources: eggs, larvae, pupae and spent diet, and were found to include some isolates identified to the genus Providencia (Enterobacteriales: Morganellaceae). We identified 41 Providencia isolates and tested their pathogenicity to A. ludens. Based on 16s rRNA sequences, 3 groups were clustered into several species of Providencia with varying capacities to affect the Mexican fruit fly production. Isolates putatively identified as P. alcalifaciens/P. rustigianii were all pathogenic causing larval and pupal yield reduction of 46-64% and 37-57%, respectively. Among them, Providencia isolate 3006 was the most pathogenic reducing larval and pupae yield by 73 and 81%, respectively. Isolates identified as P. sneebia were not pathogenic. The final cluster, P. rettgeri/P. vermicola, were variable in pathogenicity with 3 isolates yielding like the control and the rest causing larval and pupal yield reduction of 26-53% and 23-51%, respectively. Isolates putatively identified as P. alcalifaciens/P. rustigianii were more virulent than P. rettgeri/P. vermicola. Accurate identification of species is needed to diagnose and monitor pathogenic versus nonpathogenic Providencia strains.


Subject(s)
Tephritidae , Animals , Providencia , Virulence , RNA, Ribosomal, 16S , Ovum , Larva , Pupa
2.
Cells ; 10(11)2021 11 07.
Article in English | MEDLINE | ID: mdl-34831287

ABSTRACT

Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines. FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2. Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes was associated with poor prognosis in GBM based on Kaplan-Meier survival analyses. Our results suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR dual inhibition.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glycolysis , Imidazoles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Signal Transduction , Brain Neoplasms/genetics , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Glioblastoma/genetics , Glucose/metabolism , Glutamic Acid/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , Kaplan-Meier Estimate , Lactic Acid/metabolism , NAD/metabolism , Prognosis , Signal Transduction/drug effects
3.
Cancer Treat Res Commun ; 27: 100340, 2021.
Article in English | MEDLINE | ID: mdl-33636591

ABSTRACT

Cancer cells almost universally harbor constitutively active Phosphatidylinositol-3 Kinase (PI3K) Pathway activity via mutation of key signaling components and/or epigenetic mechanisms. Scores of PI3K Pathway inhibitors are currently under investigation as putative chemotherapeutics. However, feedback and stem cell mechanisms induced by PI3K Pathway inhibition can lead to reduced treatment efficacy. To address therapeutic barriers, we examined whether JAKi would reduce stem gene expression in a setting of PI3K Pathway inhibition in order to improve treatment efficacy. We targeted the PI3K Pathway with NVP-BEZ235 (dual PI3K and mTOR inhibitor) in combination with the Janus Kinase inhibitor JAKi in glioblastoma (GBM) and basal-like breast cancer (BBC) cell lines. We examined growth, gene expression, and apoptosis in cells treated with NVP-BEZ235 and/or JAKi. Growth and recovery assays showed no significant impact of dual treatment with NVP-BEZ235/JAKi compared to NVP-BEZ235 treatment alone. Gene expression and flow cytometry revealed that single and dual treatments induced apoptosis. Stem gene expression was retained in dual NVP-BEZ235/JAKi treatment samples. Future in vivo studies may give further insight into the impact of combined NVP-BEZ235/JAKi treatment in GBM and BBC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Glioblastoma/drug therapy , Imidazoles/pharmacology , Quinolines/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Glioblastoma/pathology , Humans , Imidazoles/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors
4.
J Cancer Res Clin Oncol ; 146(3): 593-604, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32030510

ABSTRACT

BACKGROUND: The PI3K pathway controls diverse cellular processes including growth, survival, metabolism, and apoptosis. Nuclear FOXO factors were observed in cancers that harbor constitutively active PI3K pathway output and stem signatures. FOXO1 and FOXO3 were previously published to induce stem genes such as OCT4 in embryonic stem cells. Here, we investigated FOXO-driven stem gene expression in U87MG glioblastoma cells. METHODS: PI3K-activated cancer cell lines were investigated for changes in gene expression, signal transduction, and clonogenicity under conditions with FOXO3 disruption or exogenous expression. The impact of PI3K pathway inhibition on stem gene expression was examined in a set of glioblastoma cell lines. RESULTS: We found that CRISPR-Cas9-mediated FOXO3 disruption in U87MG cells caused decreased OCT4 and SOX2 gene expression, STAT3 phosphorylation on tyrosine 705 and clonogenicity. FOXO3 over expression led to increased OCT4 in numerous glioblastoma cancer cell lines. Strikingly, treatment of glioblastoma cells with NVP-BEZ235 (a dual inhibitor of PI3K and mTOR), which activates FOXO factors, led to robust increases OCT4 gene expression. Direct FOXO factor recruitment to the OCT4 promoter was detected by chromatin immunoprecipitation analyses using U87MG extracts. DISCUSSION: We show for the first time that FOXO transcription factors promote stem gene expression glioblastoma cells. Treatment with PI3K inhibitor NVP-BEZ235 led to dramatic increases in stem genes in a set of glioblastoma cell lines. CONCLUSION: Given that, PI3K inhibitors are actively investigated as targeted cancer therapies, the FOXO-mediated induction of stem genes observed in this study highlights a potential hazard to PI3K inhibition. Understanding the molecular underpinnings of stem signatures in cancer will allow refinements to therapeutic strategies. Targeting FOXO factors to reduce stem cell characteristics in concert with PI3K inhibition may prove therapeutically efficacious.


Subject(s)
Forkhead Box Protein O3/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Humans
5.
BMC Mol Biol ; 20(1): 20, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412782

ABSTRACT

The original article [1] contains three erroneous mentions of usage of a restriction enzyme-BstZ17I-in the Methods section as displayed in the following sentences.

6.
BMC Mol Biol ; 19(1): 3, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540148

ABSTRACT

BACKGROUND: Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems are found in prokaryotes to defend cells from foreign DNA. CRISPR Cas9 systems have been modified and employed as genome editing tools in wide ranging organisms. Here, we provide a detailed protocol to truncate genes in mammalian cells using CRISPR Cas9 editing. We describe custom donor vector construction using Gibson assembly with the commonly utilized pcDNA3 vector as the backbone. RESULTS: We describe a step-by-step method to truncate genes of interest in mammalian cell lines using custom-made donor vectors. Our method employs 2 guide RNAs, mutant Cas9D10A nickase (Cas9 = CRISPR associated sequence 9), and a custom-made donor vector for homologous recombination to precisely truncate a gene of interest with a selectable neomycin resistance cassette (NPTII: Neomycin Phosphotransferase II). We provide a detailed protocol on how to design and construct a custom donor vector using Gibson assembly (and the commonly utilized pcDNA3 vector as the backbone) allowing researchers to obtain specific gene modifications of interest (gene truncation, gene deletion, epitope tagging or knock-in mutation). Selection of mutants in mammalian cell lines with G418 (Geneticin) combined with several screening methods: western blot analysis, polymerase chain reaction, and Sanger sequencing resulted in streamlined mutant isolation. Proof of principle experiments were done in several mammalian cell lines. CONCLUSIONS: Here we describe a detailed protocol to employ CRISPR Cas9 genome editing to truncate genes of interest using the commonly employed expression vector pcDNA3 as the backbone for the donor vector. Providing a detailed protocol for custom donor vector design and construction will enable researchers to develop unique genome editing tools. To date, detailed protocols for CRISPR Cas9 custom donor vector construction are limited (Lee et al. in Sci Rep 5:8572, 2015; Ma et al. in Sci Rep 4:4489, 2014). Custom donor vectors are commercially available, but can be expensive. Our goal is to share this protocol to aid researchers in performing genetic investigations that require custom donor vectors for specialized applications (specific gene truncations, knock-in mutations, and epitope tagging applications).


Subject(s)
CRISPR-Cas Systems , Forkhead Box Protein O3/genetics , Gene Editing/methods , Plasmids/genetics , Cell Line , Deoxyribonuclease I/metabolism , Genetic Vectors , HEK293 Cells , Homologous Recombination , Humans , Male , Mutation , RNA, Guide, Kinetoplastida/metabolism
7.
Cell Mol Life Sci ; 74(7): 1347-1363, 2017 04.
Article in English | MEDLINE | ID: mdl-27858084

ABSTRACT

As an organellar network, mitochondria dynamically regulate their organization via opposing fusion and fission pathways to maintain bioenergetic homeostasis and contribute to key cellular pathways. This dynamic balance is directly linked to bioenergetic function: loss of transmembrane potential across the inner membrane (Δψ m) disrupts mitochondrial fission/fusion balance, causing fragmentation of the network. However, the level of Δψ m required for mitochondrial dynamic balance, as well as the relative contributions of fission and fusion pathways, have remained unclear. To explore this, mitochondrial morphology and Δψ m were examined via confocal imaging and tetramethyl rhodamine ester (TMRE) flow cytometry, respectively, in cultured 143B osteosarcoma cells. When normalized to the TMRE value of untreated 143B cells as 100%, both genetic (mtDNA-depleted ρ0) and pharmacological [carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated] cell models below 34% TMRE fluorescence were unable to maintain mitochondrial interconnection, correlating with loss of fusion-active long OPA1 isoforms (L-OPA1). Mechanistically, this threshold is maintained by mechanistic coordination of DRP1-mediated fission and OPA1-mediated fusion: cells lacking either DRP1 or the OMA1 metalloprotease were insensitive to loss of Δψ m, instead maintaining an obligately fused morphology. Collectively, these findings demonstrate a mitochondrial 'tipping point' threshold mediated by the interaction of Δψ m with both DRP1 and OMA1; moreover, DRP1 appears to be required for effective OPA1 maintenance and processing, consistent with growing evidence for direct interaction of fission and fusion pathways. These results suggest that Δψ m below threshold coordinately activates both DRP1-mediated fission and OMA1 cleavage of OPA1, collapsing mitochondrial dynamic balance, with major implications for a range of signaling pathways and cellular life/death events.


Subject(s)
GTP Phosphohydrolases/metabolism , Metalloproteases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/physiology , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Line, Tumor , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Dynamins , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , HCT116 Cells , Humans , Membrane Potentials/drug effects , Metalloproteases/deficiency , Metalloproteases/genetics , Mice, Knockout , Microscopy, Fluorescence , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Mitochondria/chemistry , Mitochondria/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Polymerase Chain Reaction
8.
Appl Environ Microbiol ; 80(10): 3025-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24610840

ABSTRACT

Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.


Subject(s)
Homologous Recombination , Host Specificity , Morus/microbiology , Plant Diseases/microbiology , Xylella/genetics , Molecular Sequence Data , Morus/classification , Phylogeny , United States , Xylella/classification , Xylella/physiology
9.
Phytopathology ; 100(3): 208-15, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20128693

ABSTRACT

Although there are adequate DNA sequence differences among plant-associated and plant-pathogenic bacteria to facilitate molecular approaches for their identification, identification at a taxonomic level that is predictive of their phenotype is a challenge. The problem is the absence of a taxonomy that describes genetic variation at a biologically relevant resolution and of a database containing reference strains for comparison. Moreover, molecular evolution, population genetics, ecology, and epidemiology of many plant-pathogenic and plant-associated bacteria are still poorly understood. To address these challenges, a database with web interface was specifically designed for plant-associated and plant-pathogenic microorganisms. The Plant-Associated Microbes Database (PAMDB) comprises, thus far, data from multilocus sequence typing and analysis (MLST/MLSA) studies of Acidovorax citrulli, Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas spp. Using data deposited in PAMDB, a robust phylogeny of Xanthomonas axonopodis and related bacteria has been inferred, and the diversity existing in the Xanthomonas genus and in described Xanthomonas spp. has been compared with the diversity in P. syringae and R. solanacearum. Moreover, we show how PAMDB makes it easy to distinguish between different pathogens that cause almost identical diseases. The scalable design of PAMDB will make it easy to add more plant pathogens in the future.


Subject(s)
Bacteria/genetics , Databases, Factual , Internet , Plant Diseases/microbiology , Plants/microbiology , Computational Biology , Phylogeny
10.
Phytopathology ; 99(8): 913-20, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19594310

ABSTRACT

Acidovorax avenae subsp. citrulli, causal agent of bacterial fruit blotch, has caused considerable damage to the watermelon and melon industry in China and the United States. Understanding the emergence and spread of this pathogen is important for controlling the disease. To build a fingerprinting database for reliable identification and tracking of strains of A. avenae subsp. citrulli, a multilocus sequence typing (MLST) scheme was developed using seven conserved loci. The study included 8 original strains from the 1978 description of A. avenae subsp. citrulli, 51 from China, and 34 from worldwide collections. Two major clonal complexes (CCs), CC1 and CC2, were identified within A. avenae subsp. citrulli; 48 strains typed as CC1 and 45 as CC2. All eight original 1978 strains isolated from watermelon and melon grouped in CC1. CC2 strains were predominant in the worldwide collection and all but five were isolated from watermelon. In China, a major seed producer for melon and watermelon, the predominant strains were CC1 and were found nearly equally on melon and watermelon.


Subject(s)
Comamonadaceae/genetics , DNA, Bacterial/genetics , Evolution, Molecular , Genotype , Sequence Analysis, DNA , Fruit/microbiology , Phylogeny , Plant Diseases/microbiology , Plants/microbiology
11.
J Mol Evol ; 62(2): 176-95, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16416019

ABSTRACT

An important criterion used to detect adaptive evolution in DNA sequence data is omega(i) > 1, where omega(i) is the ratio of nonsynonymous to synonymous substitution rates in lineage i. However, the evaluation of multiple omega(i) within a phylogenetic tree can easily inflate the statistical type I error rate. We developed two rigorous methods of analysis that avoid this and other potential pitfalls. We applied these methods to four published examples of adaptive evolution. One case was strongly supported by our reanalysis (abalone sperm lysin), and one was weakly supported (baboon alpha-globin), but two examples (primate lysozyme and Antarctic fish beta-globin) did not show significant evidence of adaptive evolution. Our first method is a "bottom-up" hierarchical maximum likelihood approach, which (1) tests for significant heterogeneity in omega across the phylogeny, (2) locates its source using a sequence of planned comparisons, and (3) tests homogeneous groups of omega for omega > 1, using a modified level of significance that incorporates the pretesting. The second method is a "top-down" log-linear analysis based on estimates of nonsynonymous and synonymous substitutions in pairs of lineages. The log-linear test is applied to pairs of lineages joined at progressively deeper nodes. For each pair, the analysis simultaneously tests for adaptive evolution (omega > 1), a shift in natural selection (omega1 does not = omega2), and unequal evolution rate (the relative rate test). In both tests, we emphasized that the criterion omega1 not equal omega2 is an important additional indicator of a phylogenetic shift in the balance between natural selection and genetic drift between two related lineages.


Subject(s)
Adaptation, Biological , Evolution, Molecular , Phylogeny , Selection, Genetic , Animals , Genetic Variation , Globins/genetics , Likelihood Functions , Mucoproteins/genetics , Muramidase/genetics
12.
Appl Environ Microbiol ; 71(12): 8491-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332839

ABSTRACT

Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.


Subject(s)
Genetic Variation , Plants/microbiology , Point Mutation , Recombination, Genetic , Xylella/genetics , Base Sequence , DNA Primers , Gene Amplification , Phylogeny , Plant Diseases/microbiology , Xylella/classification , Xylella/isolation & purification , Xylella/pathogenicity
13.
Appl Environ Microbiol ; 71(7): 3832-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16000795

ABSTRACT

Xylella fastidiosa is a pathogen that causes leaf scorch and related diseases in over 100 plant species, including Pierce's disease in grapevines (PD), phony peach disease (PP), plum leaf scald (PLS), and leaf scorch in almond (ALS), oak (OAK), and oleander (OLS). We used a high-resolution DNA sequence approach to investigate the evolutionary relationships, geographic variation, and divergence times among the X. fastidiosa isolates causing these diseases in North America. Using a large data set of 10 coding loci and 26 isolates, the phylogeny of X. fastidiosa defined three major clades. Two of these clades correspond to the recently identified X. fastidiosa subspecies piercei (PD and some ALS isolates) and X. fastidiosa subsp. multiplex (OAK, PP, PLS, and some ALS isolates). The third clade grouped all of the OLS isolates into a genetically distinct group, named X. fastidiosa subsp. sandyi. These well-differentiated clades indicate that, historically, X. fastidiosa has been a clonal organism. Based on their synonymous-site divergence ( approximately 3%), these three clades probably originated more than 15,000 years ago, long before the introduction of the nonnative plants that characterize most infections. The sister clades of X. fastidiosa subsp. sandyi and X. fastidiosa subsp. piercei have synonymous-site evolutionary rates 2.9 times faster than X. fastidiosa subsp. multiplex, possibly due to generation time differences. Within X. fastidiosa subsp. multiplex, a low level ( approximately 0.1%) of genetic differentiation indicates the recent divergence of ALS isolates from the PP, PLS, and OAK isolates due to host plant adaptation and/or allopatry. The low level of variation within the X. fastidiosa subsp. piercei and X. fastidiosa subsp. sandyi clades, despite their antiquity, suggests strong selection, possibly driven by host plant adaptation.


Subject(s)
Evolution, Molecular , Genetic Variation , Multigene Family , Phylogeny , Plant Diseases/microbiology , Xylella/genetics , Bacterial Proteins/genetics , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Xylella/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...