Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0270312, 2022.
Article in English | MEDLINE | ID: mdl-35737699

ABSTRACT

The aim of the present clinically controlled two-year study was to investigate the influence of laser-based cavity preparation on the long-term performance of Class V resin-composite fillings. Class V non-carious lesions (n = 75) were randomly assigned to two test and one control group. Cavities in both test groups were prepared using an Er,Cr:YSGG laser (Waterlase MD, Biolase, Irvine, California, USA). The device was operated at 3 W (150 mJ, 30 J/cm2), 50% water, 60% air, 30 Hz in H mode. Subsequently, laser-prepared tooth surfaces in test group I (n = 21) were additionally conditioned by acid etching (etch-and-rinse). Laser-prepared cavities of test group II (n = 21) received no additional acid conditioning. After application of an adhesive, all cavities were restored using the resin-composite Venus®. For cavities in the control group (n = 33) conventional diamond burs were used for preparation which was followed by an etch-and-rinse step, too. The fillings were evaluated immediately (baseline) and after 6, 12 and 24 months of wear according to the C-criteria of the USPHS-compatible CPM-index. The results showed that after 24 month of wear, laser-preparation was associated with fillings of high clinical acceptability. Compared to conventional bur-based treatment, laser-based cavity preparation resulted in fillings with high marginal integrity and superior marginal ledge configurations (p = 0.003). Furthermore, laser-preparation combined with additional acid-conditioning (test group I) resulted in fillings with the best marginal integrity and the lowest number in marginal discoloration, especially at the enamel-composite margins (p = 0.044). In addition, total loss of fillings was also less frequently observed in both laser groups as compared to the control. The results clearly demonstrate that laser-based cavity preparation will benefit the clinical long-time performance of Class V resin-composite fillings. Furthermore, additional acid-conditioning after laser preparation is of advantage.


Subject(s)
Composite Resins , Lasers, Solid-State , Dental Restoration, Permanent , Diamond , Lasers, Solid-State/therapeutic use
2.
Exp Brain Res ; 186(2): 305-14, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18094963

ABSTRACT

Visual control has an influence on postural stability. Whilst vestibular, somatosensoric and cerebellar changes have already been frequency analytically parameterized with posturography, sufficient data regarding the visual system are still missing. The aim of this study was to evaluate the influence of pathologic and simulated visual dysfunctions on the postural system by calculating the frequency analytic representation of the visual system throughout the frequency range F1 (0.03-0.1 Hz) of Fourier analysis. The study was divided into two parts. In the first part, visually handicapped subjects and subjects with normal vision were investigated with posturography regarding postural stability (stability effect, Fourier spectrum of postural sway, etc.) with open and closed eyes. The visually impaired and the normal group differed significantly in the frequency range F1 (p = 0.002). Significant differences of the postural stability between both groups were found only in the test position with open eyes (NO). The healthy group showed a significant loss of stability, whereas the impaired group showed an increased stability due to sufficient somatosensoric processes. Visually handicapped persons can compensate the visual information deficit through improved peripheral-vestibular and somatosensoric perception and cerebellar processing. In the second part, subjects with normal vision were examined under simulated visual conditions, e.g., hyperopia (3.0 D), reduced visual acuity (VA = 20/200), yoke prisms (4 cm/m) and pursuits (pendulum). Changes in postural parameters due to simulations have been compared to a standard situation (open eyes [NO], fixation distance 3 m). Visual simulations showed influence on frequency range F1. Compared to the standard situation, significant differences have been found in reduced visual acuity, pursuits and yoke prisms. A loss of stability was measured for simulated hyperopia, pendulum and yoke prisms base down. Stability regulation can be understood as a multi-sensoric process by the visual, vestibular, somatosensoric and cerebellar system. Reduced influence of a single subsystem is compensated by the other subsystems. Obviously the main part of reduced visual input is compensated by the vestibular system. Moreover, the body sway, represented by the stability indicator, increased in this situation.


Subject(s)
Photic Stimulation/methods , Postural Balance/physiology , Posture/physiology , Vision Disorders/physiopathology , Visual Perception/physiology , Adult , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...