Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(3): 113805, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38377000

ABSTRACT

The majority of mitochondrial precursor proteins are imported through the Tom40 ß-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for ß-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.


Subject(s)
Membrane Transport Proteins , Saccharomyces cerevisiae Proteins , Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Carrier Proteins/metabolism , Protein Transport
2.
EJNMMI Res ; 12(1): 25, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35503582

ABSTRACT

Cloning of the sodium iodide symporter (NIS) in 1996 has provided an opportunity to use NIS as a powerful theranostic transgene. Novel gene therapy strategies rely on image-guided selective NIS gene transfer in non-thyroidal tumors followed by application of therapeutic radionuclides. This review highlights the remarkable progress during the last two decades in the development of the NIS gene therapy concept using selective non-viral gene delivery vehicles including synthetic polyplexes and genetically engineered mesenchymal stem cells. In addition, NIS is a sensitive reporter gene and can be monitored by high resolution PET imaging using the radiotracers sodium [124I]iodide ([124I]NaI) or [18F]tetrafluoroborate ([18F]TFB). We performed a small preclinical PET imaging study comparing sodium [124I]iodide and in-house synthesized [18F]TFB in an orthotopic NIS-expressing glioblastoma model. The results demonstrated an improved image quality using [18F]TFB. Building upon these results, we will be able to expand the NIS gene therapy approach using non-viral gene delivery vehicles to target orthotopic tumor models with low volume disease, such as glioblastoma.Trial registration not applicable.

3.
Sci Adv ; 7(36): eabi8886, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516914

ABSTRACT

Mitochondrial genomes (mtDNA) encode essential subunits of the mitochondrial respiratory chain. Mutations in mtDNA can cause a shortage in cellular energy supply, which can lead to numerous mitochondrial diseases. How cells secure mtDNA integrity over generations has remained unanswered. Here, we show that the single-celled yeast Saccharomyces cerevisiae can intracellularly distinguish between functional and defective mtDNA and promote generation of daughter cells with increasingly healthy mtDNA content. Purifying selection for functional mtDNA occurs in a continuous mitochondrial network and does not require mitochondrial fission but necessitates stable mitochondrial subdomains that depend on intact cristae morphology. Our findings support a model in which cristae-dependent proximity between mtDNA and the proteins it encodes creates a spatial "sphere of influence," which links a lack of functional fitness to clearance of defective mtDNA.

4.
Mol Ther ; 29(2): 788-803, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33068779

ABSTRACT

The tropism of mesenchymal stem cells (MSCs) for tumors forms the basis for their use as delivery vehicles for the tumor-specific transport of therapeutic genes, such as the theranostic sodium iodide symporter (NIS). Hyperthermia is used as an adjuvant for various tumor therapies and has been proposed to enhance leukocyte recruitment. Here, we describe the enhanced recruitment of adoptively applied NIS-expressing MSCs to tumors in response to regional hyperthermia. Hyperthermia (41°C, 1 h) of human hepatocellular carcinoma cells (HuH7) led to transiently increased production of immunomodulatory factors. MSCs showed enhanced chemotaxis to supernatants derived from heat-treated cells in a 3D live-cell tracking assay and was validated in vivo in subcutaneous HuH7 mouse xenografts. Cytomegalovirus (CMV)-NIS-MSCs were applied 6-48 h after or 24-48 h before hyperthermia treatment. Using 123I-scintigraphy, thermo-stimulation (41°C, 1 h) 24 h after CMV-NIS-MSC injection resulted in a significantly increased uptake of 123I in heat-treated tumors compared with controls. Immunohistochemical staining and real-time PCR confirmed tumor-selective, temperature-dependent MSC migration. Therapeutic efficacy was significantly enhanced by combining CMV-NIS-MSC-mediated 131I therapy with regional hyperthermia. We demonstrate here for the first time that hyperthermia can significantly boost tumoral MSC recruitment, thereby significantly enhancing therapeutic efficacy of MSC-mediated NIS gene therapy.


Subject(s)
Cancer-Associated Fibroblasts , Cell Movement , Hyperthermia, Induced , Mesenchymal Stem Cells/metabolism , Stromal Cells/metabolism , Animals , Cell Movement/immunology , Disease Models, Animal , Humans , Mesenchymal Stem Cell Transplantation , Mice , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Xenograft Model Antitumor Assays
5.
Theranostics ; 10(10): 4490-4506, 2020.
Article in English | MEDLINE | ID: mdl-32292510

ABSTRACT

Purpose: The tumor homing characteristics of mesenchymal stem cells (MSCs) make them attractive vehicles for the tumor-specific delivery of therapeutic agents, such as the sodium iodide symporter (NIS). NIS is a theranostic protein that allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression by radioiodine imaging as well as the therapeutic application of 131I. To gain local and temporal control of transgene expression, and thereby improve tumor selectivity, we engineered MSCs to express the NIS gene under control of a heat-inducible HSP70B promoter (HSP70B-NIS-MSCs). Experimental Design: NIS induction in heat-treated HSP70B-NIS-MSCs was verified by 125I uptake assay, RT-PCR, Western blot and immunofluorescence staining. HSP70B-NIS-MSCs were then injected i.v. into mice carrying subcutaneous hepatocellular carcinoma HuH7 xenografts, and hyperthermia (1 h at 41°C) was locally applied to the tumor. 0 - 72 h later radioiodine uptake was assessed by 123I-scintigraphy. The most effective uptake regime was then selected for 131I therapy. Results: The HSP70B promoter showed low basal activity in vitro and was significantly induced in response to heat. In vivo, the highest tumoral iodine accumulation was seen 12 h after application of hyperthermia. HSP70B-NIS-MSC-mediated 131I therapy combined with hyperthermia resulted in a significantly reduced tumor growth with prolonged survival as compared to control groups. Conclusions: The heat-inducible HSP70B promoter allows hyperthermia-induced spatial and temporal control of MSC-mediated theranostic NIS gene radiotherapy with efficient tumor-selective and temperature-dependent accumulation of radioiodine in heat-treated tumors.


Subject(s)
Carcinoma, Hepatocellular/therapy , Genetic Therapy , Hyperthermia, Induced , Iodine Radioisotopes/therapeutic use , Liver Neoplasms, Experimental/therapy , Mesenchymal Stem Cells/cytology , Symporters/genetics , Animals , Cell Line, Tumor , Female , HSP70 Heat-Shock Proteins/genetics , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Promoter Regions, Genetic
6.
Microb Cell ; 7(4): 106-114, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32274389

ABSTRACT

The protein phosphatase calcineurin is activated in response to rising intracellular Ca2+ levels and impacts fundamental cellular processes in organisms ranging from yeast to humans. In fungi, calcineurin orchestrates cellular adaptation to diverse environmental challenges and is essential for virulence of pathogenic species. To enable rapid and large-scale assessment of calcineurin activity in living, unperturbed yeast cells, we have generated stable and destabilized GFP transcriptional reporters under the control of a calcineurin-dependent response element (CDRE). Using the reporters, we show that the rapid dynamics of calcineurin activation and deactivation can be followed by flow cytometry and fluorescence microscopy. This system is compatible with live/dead staining that excludes confounding dead cells from the analysis. The reporters provide technology to monitor calcineurin dynamics during stress and ageing and may serve as a drug-screening platform to identify novel antifungal compounds that selectively target calcineurin.

7.
Clin Cancer Res ; 25(19): 5997-6008, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31196853

ABSTRACT

PURPOSE: The innate tumor homing potential of mesenchymal stem cells (MSCs) has been used for a targeted delivery of the theranostic sodium iodide symporter (NIS) transgene into solid tumors. We have previously shown that external beam radiotherapy (EBRT) results in the enhanced recruitment of NIS-expressing MSCs into human hepatocellular carcinoma (HuH7). In parallel, the tumor-associated cytokine TGFB1 becomes strongly upregulated in HuH7 tumors in response to EBRT. EXPERIMENTAL DESIGN: We therefore evaluated the effects of combining focused EBRT (5 Gy) with MSC-mediated systemic delivery of the theranostic NIS transgene under control of a synthetic TGFB1-inducible SMAD-responsive promoter (SMAD-NIS-MSCs) using 123I-scintigraphy followed by 131I therapy in CD1 nu/nu mice harboring subcutaneous human hepatocellular carcinoma (HuH7). RESULTS: Following tumor irradiation and SMAD-NIS-MSC application, tumoral iodide uptake monitored in vivo by 123I-scintigraphy was enhanced as compared with nonirradiated tumors. Combination of EBRT and SMAD-NIS-MSC-mediated 131I therapy resulted in a significantly improved delay in tumor growth and prolonged survival in therapy mice as compared with the combined therapy using CMV-NIS-MSCs or to control groups receiving EBRT or saline only, or EBRT together with SMAD-NIS-MSCs and saline applications. CONCLUSIONS: MSC-based NIS-mediated 131I therapy after EBRT treatment dramatically enhanced therapeutic efficacy when a TGFB1-inducible SMAD-responsive promoter was used to drive NIS expression in adoptively applied MSCs. The remarkable therapeutic effect seen is thought to be linked in large part to the enhanced TGFB1 produced in this context, which leads to a highly selective and focused amplification of MSC-based NIS expression within the tumor milieu.


Subject(s)
Carcinoma, Hepatocellular/therapy , Genetic Therapy/methods , Iodine Radioisotopes/pharmacology , Liver Neoplasms/therapy , Mesenchymal Stem Cells/cytology , Symporters/genetics , Transforming Growth Factor beta1/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Mice , Mice, Nude , Radionuclide Imaging/methods , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/radiation effects , Transgenes , Xenograft Model Antitumor Assays
8.
Gene Ther ; 26(3-4): 93-108, 2019 04.
Article in English | MEDLINE | ID: mdl-30683895

ABSTRACT

Tumor heterogeneity, within and between tumors, may have severe implications for tumor therapy, especially for targeted gene therapy, where single-targeted approaches often result in limited efficacy and therapy resistance. Polymer-formulated nonviral vectors provide a potent delivery platform for cancer therapy. To improve applicability for future clinical use in a broad range of patients and cancer types, a dual-targeting approach was performed. Synthetic LPEI-PEG2kDa-based polymer backbones were coupled to two tumor-specific peptide ligands GE11 (EGFR-targeting) and cMBP (cMET-targeting). The dual-targeting approach was used to deliver the theranostic sodium iodide symporter (NIS) gene to hepatocellular cancer. NIS as auspicious theranostic gene allows noninvasive imaging of functional NIS gene expression and effective anticancer radioiodide therapy. Enhanced tumor-specific transduction efficiency of dual-targeted polyplexes compared to single-targeted polyplexes was demonstrated in vitro using tumor cell lines with different EGFR and cMET expression and in vivo by 124I-PET-imaging. Therapeutic efficacy of the bispecific concept was mirrored by significantly reduced tumor growth and perfusion, which was associated with prolonged animal survival. In conclusion, the dual-targeting approach highlights the benefits of a bifunctional strategy for a future clinical translation of the bioimaging-based NIS-mediated radiotherapy allowing efficient targeting of heterogeneic tumors with variable receptor expression levels.


Subject(s)
Carcinoma, Hepatocellular/genetics , Genetic Therapy/methods , Theranostic Nanomedicine/methods , Animals , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Drug Delivery Systems/methods , ErbB Receptors/analysis , ErbB Receptors/genetics , Female , Gene Expression/genetics , Gene Transfer Techniques , Genetic Heterogeneity , Heterografts , Humans , Ligands , Liver Neoplasms/genetics , Mice , Mice, Nude , Peptides/chemical synthesis , Peptides/genetics , Polymers , Proto-Oncogene Proteins c-met/analysis , Proto-Oncogene Proteins c-met/genetics
9.
Endocr Relat Cancer ; 26(1): 89-101, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30121623

ABSTRACT

Based on their excellent tumor-homing capacity, genetically engineered mesenchymal stem cells (MSCs) are under investigation as tumor-selective gene delivery vehicles. Transgenic expression of the sodium iodide symporter (NIS) in genetically engineered MSCs allows noninvasive tracking of MSC homing by imaging of functional NIS expression as well as therapeutic application of 131I. The use of tumor stroma-activated promoters can improve tumor-specific MSC-mediated transgene delivery. The essential role of transforming growth factor B1 (TGFB1) and the SMAD downstream target in the signaling between tumor and the surrounding stroma makes the biology of this pathway a potential option to better control NIS expression within the tumor milieu. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by a synthetic SMAD-responsive promoter (SMAD-NIS-MSCs). Radioiodide uptake assays revealed a 4.9-fold increase in NIS-mediated perchlorate-sensitive iodide uptake in SMAD-NIS-MSCs after TGFB1 stimulation compared to unstimulated cells demonstrating the successful establishment of MSCs, which induce NIS expression in response to activation of TGFB1 signaling using a SMAD-responsive promoter. 123I-scintigraphy revealed significant tumor-specific radioiodide accumulation and thus NIS expression after systemic application of SMAD-NIS-MSCs into mice harboring subcutaneous tumors derived from the human hepatocellular carcinoma (HCC) cell line HuH7, which express TGFB1. 131I therapy in SMAD-NIS-MSCs-treated mice demonstrated a significant delay in tumor growth and prolonged survival. Making use of the tumoral TGFB1 signaling network in the context of MSC-mediated NIS gene delivery is a promising approach to foster tumor stroma-selectivity of NIS transgene expression and tailor NIS-based gene therapy to TGFB1-rich tumor environments.


Subject(s)
Mesenchymal Stem Cell Transplantation , Smad Proteins/metabolism , Symporters/genetics , Transforming Growth Factor beta1/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Female , Genetic Therapy , Humans , Iodine Radioisotopes/therapeutic use , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Mesenchymal Stem Cells/metabolism , Mice, Nude , Smad Proteins/genetics , Symporters/metabolism , Transfection , Transgenes
10.
Mol Cancer Res ; 17(1): 310-320, 2019 01.
Article in English | MEDLINE | ID: mdl-30224540

ABSTRACT

The sodium iodide symporter (SLC5A5/NIS) as theranostic gene would allow for non-invasive imaging of functional NIS expression and therapeutic radioiodine application. Genetically engineered mesenchymal stem cells (MSC), based on their tumor-homing abilities, show great promise as tumor-selective NIS gene delivery vehicles for non-thyroidal tumors. As a next step towards clinical application, tumor specificity and efficacy of MSCs were investigated in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC). Syngeneic murine MSCs were stably transfected with a NIS-expressing plasmid driven by the CMV-promoter (NIS-MSC). In vivo 123I-scintigraphy and 124I-PET revealed significant perchlorate-sensitive NIS-mediated radioiodide accumulation in PDAC after systemic injection of NIS-MSCs. Active MSC recruitment into the tumor stroma was confirmed using NIS immunohistochemistry (IHC). A therapeutic strategy, consisting of three cycles of systemic MSC-mediated NIS delivery, followed by 131I application, resulted in a significant delay and reduction in tumor growth as compared to controls. Furthermore, IHC analysis of α-SMA and Ki67 revealed differences in the amount and behavior of activated fibroblasts in tumors of mice injected with NIS-MSCs as compared with saline-treated mice. Taken together, MSCs as NIS gene delivery vehicles in this advanced endogenous PDAC mouse model demonstrated high stromal targeting of NIS by selective recruitment of NIS-MSCs after systemic application resulting in an impressive 131I therapeutic effect. IMPLICATIONS: These data expand the prospect of MSC-mediated radioiodine imaging-guided therapy of pancreatic cancer using the sodium iodide symporter as a theranostic gene in a clinical setting.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/therapy , Gene Transfer Techniques , Iodine Radioisotopes/administration & dosage , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/radiotherapy , Cell Line , Cell Line, Tumor , Female , Humans , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Positron-Emission Tomography/methods , Transfection
11.
Hum Gene Ther ; 29(11): 1287-1300, 2018 11.
Article in English | MEDLINE | ID: mdl-29724129

ABSTRACT

The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium-iodide symporter (NIS) to solid tumors. External beam radiation therapy may represent an ideal setting for the application of engineered MSC-based gene therapy, as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7; 1-10 Gy) showed a strong dose-dependent increase in steady-state mRNA levels of CXCL8, CXCL12, FGF2, PDGFB, TGFB1, THBS1, and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration were tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index, mean center of mass, and mean directionality of MSCs toward supernatants was seen from irradiated as compared to non-irradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in quantitative polymerase chain reaction and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2, or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. The results demonstrate that external beam radiation therapy enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.


Subject(s)
Gene Transfer Techniques , Mesenchymal Stem Cells/metabolism , Radiation, Ionizing , Symporters/genetics , Animals , Cell Line, Tumor , Cell Movement/radiation effects , Chemokines/genetics , Chemokines/metabolism , Female , Gene Expression Regulation/radiation effects , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Iodine Radioisotopes/administration & dosage , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Mice, Nude , Neoplasms/diagnostic imaging , Neoplasms/therapy
12.
Oncotarget ; 8(54): 92195-92208, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29190908

ABSTRACT

Liver metastases present a serious problem in the therapy of advanced colorectal cancer (CRC), as more than 20% of patients have distant metastases at the time of diagnosis with less than 5% being cured. Consequently, new therapeutic approaches are of major need together with high-resolution imaging methods that allow highly specific detection of small metastases. The unique combination of reporter and therapy gene function of the sodium iodide symporter (NIS) may represent a promising theranostic strategy for CRC liver metastases allowing non-invasive imaging of functional NIS expression and therapeutic application of 131I. For targeted NIS gene transfer polymers containing linear polyethylenimine (LPEI), polyethylene glycol (PEG) and the epidermal growth factor receptor (EGFR)-specific ligand GE11 were complexed with human NIS DNA (LPEI-PEG-GE11/NIS). Tumor specificity and transduction efficiency were examined in high EGFR-expressing LS174T metastases by non-invasive imaging using 18F-tetrafluoroborate (18F-TFB) as novel NIS PET tracer. Mice that were injected with LPEI-PEG-GE11/NIS 48 h before 18F-TFB application showed high tumoral levels (4.8±0.6% of injected dose) of NIS-mediated radionuclide uptake in comparison to low levels detected in mice that received untargeted control polyplexes. Three cycles of intravenous injection of EGFR-targeted NIS polyplexes followed by therapeutic application of 55.5 MBq 131I resulted in marked delay in metastases spread, which was associated with improved animal survival. In conclusion, these preclinical data confirm the enormous potential of EGFR-targeted synthetic polymers for systemic NIS gene delivery in an advanced multifocal CRC liver metastases model and open the exciting prospect of NIS-mediated radionuclide therapy in metastatic disease.

13.
Thyroid ; 27(12): 1534-1543, 2017 12.
Article in English | MEDLINE | ID: mdl-29032724

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC), the most aggressive form of thyroid cancer, is unresponsive to radioiodine therapy. The current study aimed to extend the diagnostic and therapeutic application of radioiodine beyond the treatment of differentiated thyroid cancer by targeting the functional sodium-iodide symporter (NIS) to ATC. METHODS: The study employed nanoparticle vectors (polyplexes) based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG) and coupled to the synthetic peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand in order to target a NIS-expressing plasmid (LPEI-PEG-GE11/NIS) to EGFR overexpressing human thyroid carcinoma cell lines. Using ATC xenograft mouse models, transfection efficiency by 123I scintigraphy and potential for systemic radioiodine therapy after systemic polyplex application were evaluated. RESULTS: In vitro iodide uptake studies in SW1736 and Hth74 ATC cells, and, for comparison, in more differentiated follicular (FTC-133) and papillary (BCPAP) thyroid carcinoma cells demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS that correlated well with EGFR expression levels. After systemic polyplex injection, in vivo 123I gamma camera imaging revealed significant tumor-specific accumulation of radioiodine in an SW1736 and an Hth74 xenograft mouse model. Radioiodine accumulation was found to be higher in SW1736 tumors, reflecting in vitro results, EGFR expression levels, and results from ex vivo analysis of NIS staining. Administration of 131I in LPEI-PEG-GE11/NIS-treated SW1736 xenograft mice resulted in significantly reduced tumor growth associated with prolonged survival compared to control animals. CONCLUSIONS: The data open the exciting prospect of NIS-mediated radionuclide imaging and therapy of ATC after non-viral reintroduction of the NIS gene. The high tumor specificity after systemic application makes the strategy an attractive alternative for the treatment of highly metastatic ATC.


Subject(s)
Symporters/metabolism , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Neoplasms/therapy , Animals , Cell Line, Tumor , ErbB Receptors , Genetic Therapy , Humans , Iodine Radioisotopes/therapeutic use , Mice , Peptides , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
14.
Oncotarget ; 7(34): 54795-54810, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27458162

ABSTRACT

Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to experimental hepatocellular carcinoma (HCC) delivered by MSCs.MSCs engineered to express transgenes driven by a hypoxia-responsive promoter showed robust transgene induction under hypoxia as demonstrated by mCherry expression in tumor cell spheroid models, or radioiodide uptake using NIS. Subcutaneous and orthotopic HCC xenograft mouse models revealed significant levels of perchlorate-sensitive NIS-mediated tumoral radioiodide accumulation by tumor-recruited MSCs using 123I-scintigraphy or 124I-positron emission tomography. Functional NIS expression was further confirmed by ex vivo 123I-biodistribution analysis. Administration of a therapeutic dose of 131I in mice treated with NIS-transfected MSCs resulted in delayed tumor growth and reduced tumor perfusion, as shown by contrast-enhanced sonography, and significantly prolonged survival of mice bearing orthotopic HCC tumors. Interestingly, radioiodide uptake into subcutaneous tumors was not sufficient to induce therapeutic effects. Our results demonstrate the potential of using tumor hypoxia-based approaches to drive radioiodide therapy in non-thyroidal tumors.


Subject(s)
Iodine Radioisotopes/therapeutic use , Liver Neoplasms, Experimental/radiotherapy , Liver Neoplasms/radiotherapy , Mesenchymal Stem Cells/metabolism , Symporters/metabolism , Animals , Cell Line, Tumor , Combined Modality Therapy , Female , Humans , Hypoxia , Iodine Radioisotopes/pharmacokinetics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice, Nude , Symporters/genetics , Transfection , Xenograft Model Antitumor Assays
15.
Mol Ther ; 24(8): 1395-404, 2016 08.
Article in English | MEDLINE | ID: mdl-27157666

ABSTRACT

The sodium iodide symporter (NIS) as well-characterized theranostic gene represents an outstanding tool to target different cancer types allowing noninvasive imaging of functional NIS expression and therapeutic radioiodide application. Based on its overexpression on the surface of most cancer types, the cMET/hepatocyte growth factor receptor serves as ideal target for tumor-selective gene delivery. Sequence-defined polymers as nonviral gene delivery vehicles comprising polyethylene glycol (PEG) and cationic (oligoethanoamino) amide cores coupled with a cMET-binding peptide (cMBP2) were complexed with NIS-DNA and tested for receptor-specificity, transduction efficiency, and therapeutic efficacy in hepatocellular cancer cells HuH7. In vitro iodide uptake studies demonstrated high transduction efficiency and cMET-specificity of NIS-encoding polyplexes (cMBP2-PEG-Stp/NIS) compared to polyplexes without targeting ligand (Ala-PEG-Stp/NIS) and without coding DNA (cMBP2-PEG-Stp/Antisense-NIS). Tumor recruitment and vector biodistribution were investigated in vivo in a subcutaneous xenograft mouse model showing high tumor-selective iodide accumulation in cMBP2-PEG-Stp/NIS-treated mice (6.6 ± 1.6% ID/g (123)I, biological half-life 3 hours) by (123)I-scintigraphy. Therapy studies with three cycles of polyplexes and (131)I application resulted in significant delay in tumor growth and prolonged survival. These data demonstrate the enormous potential of cMET-targeted sequence-defined polymers combined with the unique theranostic function of NIS allowing for optimized transfection efficiency while eliminating toxicity.


Subject(s)
Gene Transfer Techniques , Polymers , Proto-Oncogene Proteins c-met/genetics , Symporters/genetics , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression , Heterografts , Humans , Mice , Polyethylene Glycols/chemistry , Polymers/chemistry , Proto-Oncogene Proteins c-met/metabolism , Theranostic Nanomedicine , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...