Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Motil Cytoskeleton ; 56(4): 252-66, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14584028

ABSTRACT

Previous studies have suggested that the actin-based centripetal flow process in sea urchin coelomocytes is the result of a two-part mechanism, actin polymerization at the cell edge coupled with actomyosin contraction at the cell center. In the present study, we have extended the testing of this two-part model by attempting to stimulate actomyosin contraction via treatment of coelomocytes with the phosphatase inhibitor Calyculin A (CalyA). The effects of this drug were studied using digitally-enhanced video microscopy of living cells combined with immunofluorescent localization and scanning electron microscopy. Under the influence of CalyA, the coelomocyte actin cytoskeleton undergoes a radical reorganization from a dense network to one displaying an array of tangential arcs and radial rivulets in which actin and the Arp2/3 complex concentrate. In addition, the structure and dynamics of the cell center are transformed due to the accumulation of actin and membrane in this region and the constriction of the central actomyosin ring. Physiological evidence of an increase in actomyosin-based contractility following CalyA treatment was demonstrated in experiments in which cells generated tears in their cell centers in response to the drug. Western blotting and immunofluorescent localization with antibodies against the phosphorylated form of the myosin regulatory light chain (MRLC) suggested that the demonstrated constriction of actomyosin distribution was the result of CalyA-induced phosphorylation of MRLC. Overall, the results suggest that there is significant cross talk between the two underlying mechanisms of actin polymerization and actomyosin contraction, and indicate that changes in actomyosin tension may be translated into alterations in the structural organization of the actin cytoskeleton.


Subject(s)
Actins/metabolism , Actomyosin/metabolism , Enzyme Inhibitors/pharmacology , Oxazoles/pharmacology , Phosphoprotein Phosphatases/metabolism , Sea Urchins/drug effects , Animals , Biological Transport/physiology , Cells, Cultured , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Humans , Marine Toxins , Molecular Motor Proteins/metabolism , Phosphoprotein Phosphatases/antagonists & inhibitors , Sea Urchins/cytology , Sea Urchins/metabolism
2.
Mol Biol Cell ; 13(3): 1001-14, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11907278

ABSTRACT

The actomyosin purse string is an evolutionarily conserved contractile structure that is involved in cytokinesis, morphogenesis, and wound healing. Recent studies suggested that an actomyosin purse string is crucial for the closure of wounds in single cells. In the present study, morphological and pharmacological methods were used to investigate the role of this structure in the closure of wounds in the peripheral cytoplasm of sea urchin coelomocytes. These discoidal shaped cells underwent a dramatic form of actin-based centripetal/retrograde flow and occasionally opened and closed spontaneous wounds in their lamellipodia. Fluorescent phalloidin staining indicated that a well defined fringe of actin filaments assembles from the margin of these holes, and drug studies with cytochalasin D and latrunculin A indicated that actin polymerization is required for wound closure. Additional evidence that actin polymerization is involved in wound closure was provided by the localization of components of the Arp2/3 complex to the wound margin. Significantly, myosin II immunolocalization demonstrated that it is not associated with wound margins despite being present in the perinuclear region. Pharmacological evidence for the lack of myosin II involvement in wound closure comes from experiments in which a microneedle was used to produce wounds in cells in which actomyosin contraction was inhibited by treatment with kinase inhibitors. Wounds produced in kinase inhibitor-treated cells closed in a manner similar to that seen with control cells. Taken together, our results suggest that an actomyosin purse string mechanism is not responsible for the closure of lamellar wounds in coelomocytes. We hypothesize that the wounds heal by means of a combination of the force produced by actin polymerization alone and centripetal flow. Interestingly, these cells did assemble an actomyosin structure around the margin of phagosome-like membrane invaginations, indicating that myosin is not simply excluded from the periphery by some general mechanism. The results indicate that the actomyosin purse string is not the only mechanism that can mediate wound closure in single cells.


Subject(s)
Actins/metabolism , Pseudopodia/metabolism , Sea Urchins/ultrastructure , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Membrane/metabolism , Cytochalasin D/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Microscopy, Video , Myosin Type II/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Phalloidine/metabolism , Sea Urchins/drug effects , Sea Urchins/metabolism , Staurosporine/pharmacology , Thiazoles/pharmacology , Thiazolidines
SELECTION OF CITATIONS
SEARCH DETAIL
...