Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 152(4): 450-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22547267

ABSTRACT

At the Paul Scherrer Institute's Calibration Laboratory, neutron reference fields are provided for the calibration of ambient and personal dose equivalent (rate) metres and passive dosemeters. To ensure traceability to the standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany, the neutron fields are characterised by means of a PTB-calibrated Berthold LB6411 neutron probe which is used as a secondary standard. The LB6411 detector suffers from an unstable, increasing dose rate reading in the order of up to +5 % (according to the manufacturers, this is due to a charging effect in the (3)He proportional counter). In a calibration, this instability is usually corrected for based on the reading obtained with a test source. In this work, the instability was investigated by means of measurements under irradiation with ambient dose equivalent rates up to 24 mSv h(-1) for up to 20 h and compared with the behaviour of an LB6419 and a Thermo Wendi-2 probe. The reading of the instruments was found to reach a plateau, e.g. it becomes stable after ∼90 min during irradiation with 10 mSv h(-1) neutrons. The plateau is reached faster for higher dose rates. This supports the interpretation as a charging effect in the proportional counter. The effect could also be duplicated in an irradiation with photons from a (137)Cs source. The decay time of the accumulated charge was found to be very long, i.e. the instrument showed a stable reproducible reading for up to 6 h after the plateau was reached. From these observations, a conditioning procedure was derived which ensures a stable operation of the instrument after an irradiation of the instrument preceding its use in the reference measurements.


Subject(s)
Industry/instrumentation , Neutrons , Radiometry/instrumentation , Equipment Design , Equipment Failure Analysis , Radiation Dosage
2.
Appl Radiat Isot ; 64(10-11): 1102-7, 2006.
Article in English | MEDLINE | ID: mdl-16580217

ABSTRACT

For the first time, a comparison of radon activity concentration in air has been performed within the scope of Euromet. In the project 657, 'Comparison of calibration facilities for the radon activity concentration,' 12 participants from 9 countries compared different radon reference atmospheres at 1, 3 and 10 k Bq m-3 via a transfer standard. The comparison was listed as BIPM supplementary comparison EUROMET.RI(II)-S1. The results of most participants are correlated due to common traceability to one single radon gas standard producer. This makes a careful correlation analysis necessary to achieve an appropriate comparison reference value. The results of the comparison as well as the complex analysis of the correlated set of data is presented and discussed.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollutants, Radioactive/standards , International Cooperation , Radiation Monitoring/methods , Radiation Monitoring/standards , Radon/analysis , Radon/standards , Calibration/standards , Europe , Guidelines as Topic , Radiation Dosage , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
3.
Radiat Prot Dosimetry ; 102(4): 343-8, 2002.
Article in English | MEDLINE | ID: mdl-12474944

ABSTRACT

An exposure methodology was developed for the determination of the absorption rate of unattached radon progeny deposited in the human respiratory tract to blood. Twenty-one volunteers were exposed in a radon chamber during well-controlled aerosol and radon progeny conditions, with predominantly unattached radon daughters. Special efforts were made to restrict the dose to the volunteers to an absolute maximum of 0.08 mSv. Measurements of radon gas and radon progeny in blood samples of these volunteers indicated absorption half times of 20 min to 60 min. Former determinations, mainly performed with much larger aerosol particles of diameters between 100 nm and 1,000 nm, implied absorption half times around 10 h. This indicates that the absorption of radon decay products from ciliated airways into blood is dependent upon particle size and particle composition.


Subject(s)
Environmental Monitoring/methods , Radiometry/methods , Radon Daughters , Radon/pharmacokinetics , Respiratory System/metabolism , Absorption , Administration, Inhalation , Aerosols , Calibration , Dose-Response Relationship, Radiation , Humans , Sensitivity and Specificity
4.
Radiat Prot Dosimetry ; 102(3): 229-48, 2002.
Article in English | MEDLINE | ID: mdl-12430962

ABSTRACT

A parameter uncertainty analysis has been performed to derive the probability distribution of the weighted equivalent dose to lung for an adult (w(lung) H(lung)) per unit exposure to radon progeny in the home. The analysis was performed using the ICRP Publication 66 human respiratory tract model (HRTM) with tissue weighting factor for the lung, w(lung) = 0.12 and the radiation weighting factor for alpha particles, wR = 20. It is assumed that the HRTM is a realistic representation of the physical and biological processes, and that the parameter values are uncertain. The parameter probability distributions used in the analysis were based on a combination of experimental results and expert judgement from several prominent European scientists. The assignment of the probability distributions describing the uncertainty in the values of the assigned fractions (ABB, Abb, AAI) of the tissue weighting factor proved difficult in practice due to lack of quantitative data. Because of this several distributions were considered. The results of the analysis give a mean value of w(lung) H(lung) per unit exposure to radon progeny in the home of 15 mSv per working level month (WLM) for a population. For a given radon gas concentration, the mean value of w(lung) H(lung) per unit exposure is 13 mSv per 200 Bq.m(-3).y of 222Rn. Parameters characterising the distributions of w(lung) H(lung) per unit exposure are given. If the ICRP weighting factors are fixed at their default values (ABB, Abb, AAI = 0.333, 0.333, 0.333; w(lung) = 0.12; and wr = 20) then on the basis of this uncertainty analysis it is extremely unlikely (P approximately 0.0007) that a value of Hw/Pp for exposure in the home is as low as 4 mSv per WLM, the value determined with the epidemiological approach. Even when the uncertainties in the ABB, Abb, AAI, values are included then this probability is predicted to be between 0.01 to 0.08 depending upon the distribution assumed for describing the uncertainties in the ABB, Abb, AAI, values. Thus, it is concluded that the uncertainties in the HRTM parameters considered in this study cannot totally account for the discrepancy between the dosimetric and epidemiological approaches.


Subject(s)
Air Pollutants, Radioactive/analysis , Lung/radiation effects , Models, Biological , Radiometry/methods , Radon Daughters/analysis , Administration, Inhalation , Adult , Air Pollutants, Radioactive/adverse effects , Air Pollution, Indoor/analysis , Alpha Particles , Environmental Monitoring/methods , Humans , Lung/metabolism , Lung/pathology , Models, Statistical , Organ Size/radiation effects , Radiation Dosage , Radiation Injuries/etiology , Radiation Protection/standards , Radiometry/standards , Radon Daughters/administration & dosage , Radon Daughters/adverse effects , Respiratory System/metabolism , Respiratory System/radiation effects , Stochastic Processes , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...