Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 931: 172948, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703853

ABSTRACT

Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.


Subject(s)
Cyanobacteria , Wetlands , Water Pollutants, Chemical/analysis , Fresh Water/chemistry , Environmental Monitoring , Sodium Chloride , Salinity , Phytoplankton/drug effects
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193976

ABSTRACT

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Subject(s)
Guidelines as Topic , Lakes , Salinity , Water Quality , Animals , Anthropogenic Effects , Ecosystem , Europe , North America , Zooplankton
3.
Sci Total Environ ; 694: 133704, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31394331

ABSTRACT

Non-native species often lead to undesirable ecological and environmental impacts. Two hypotheses that predict establishment of non-native species are enemy release and biotic resistance. Support for these hypotheses in freshwater invasions is mixed. Experiments combined with field observations provide a complementary approach to understanding how interactions between native and non-native species lead to enemy release or biotic resistance. We tested experimentally whether these hypotheses provided insights into the invasion of the banded mystery snail (Viviparus georgianus), which has invaded the Great Lakes region and northeastern Unites States (US) from the southeastern US. Because freshwater systems vary widely in their nutrient concentrations due to natural and anthropogenic processes, we tested whether nutrient additions altered competitive and predatory interactions that regulate mechanisms of enemy release or biotic resistance. We evaluated the status of the mystery snail invasion in a 3-year field survey of Lake George (NY, US) to identify if field observations supported any experimental conclusions. The presence of the banded mystery snail led to a 14% and 27% reduction in biomass of a native competitor under low- and high-nutrient concentrations, respectively. The mystery snail also triggered a 29% biomass loss of a native snail predator, but only in low-nutrient concentrations. Field surveys indicated that the mystery snail dominated the snail community; of seven snail species, it comprised 77% of all snails. Results from the field surveys combined with experimental results indicate that neither competitors nor predators have likely suppressed the invasion of the banded mystery snail. This conclusion is consistent with competitive- and predatory-enemy release as we found no indication of biotic resistance via competition or predation from native species. Our results further highlight that the post-establishment impacts of invasive species are altered by the trophic state of freshwater ecosystems.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Food Chain , Introduced Species , Water Pollution/statistics & numerical data , Animals , Environmental Monitoring , Great Lakes Region , Predatory Behavior , Snails
4.
Article in English | MEDLINE | ID: mdl-30509918

ABSTRACT

Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Subject(s)
Environmental Policy/legislation & jurisprudence , Environmental Restoration and Remediation/legislation & jurisprudence , Fresh Water/analysis , Salinity , Water Pollution, Chemical/legislation & jurisprudence , Government Regulation
5.
Environ Toxicol Chem ; 37(8): 2188-2197, 2018 08.
Article in English | MEDLINE | ID: mdl-29786147

ABSTRACT

Although the paradigm for increased tolerance to pesticides has been by selection on constitutive (naïve) traits, recent research has shown it can also occur through phenotypic plasticity. However, the time period in which induction can occur, the duration of induced tolerance, and the influence of multiple induction events remain unknown. We hypothesized that the induction of increased pesticide tolerance is limited to early sensitive periods, the magnitude of induced tolerance depends on the number of exposures, and the retention of induced tolerance depends on the time elapsed after an exposure and the number of exposures. To test these hypotheses, we exposed wood frog tadpoles to either a no-carbaryl control (water) or 0.5 mg/L carbaryl at 4 time periods, and later tested their tolerance to carbaryl using time-to-death assays. We discovered that tadpoles induced increased tolerance early and midway but not late in our experiment and their constitutive tolerance increased with age. We found no difference in the magnitude of induced tolerance after a single or 2 exposures. Finally, induced pesticide tolerance was reversed within 6 d but was retained only when tadpoles experienced all 4 consecutive exposures. Phenotypic plasticity provides an immediate response for sensitive amphibian larvae to early pesticide exposures and reduces phenotypic mismatches in aquatic environments contaminated by agrochemicals. Environ Toxicol Chem 2018;37:2188-2197. © 2018 SETAC.


Subject(s)
Environmental Exposure/analysis , Insecticides/toxicity , Ranidae/physiology , Animals , Carbaryl/toxicity , Larva/drug effects , Pesticides/toxicity , Time Factors
6.
Environ Sci Technol ; 51(23): 13913-13919, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29087697

ABSTRACT

Recent research has reported increased tolerance to agrochemicals in target and nontarget organisms following acute physiological changes induced through phenotypic plasticity. Moreover, the most inducible populations are those from more pristine locations, far from agrochemical use. We asked why do populations with no known history of pesticide exposure have the ability to induce adaptive responses to novel agrochemicals? We hypothesized that increased pesticide tolerance results from a generalized stressor response in organisms, and would be induced following sublethal exposure to natural and anthropogenic stressors. We exposed larval wood frogs (Lithobates sylvaticus) to one of seven natural or anthropogenic stressors (predator cue (Anax spp.), 0.5 or 1.0 mg carbaryl/L, road salt (200 or 1000 mg Cl-/L), ethanol-vehicle control, or no-stressor control) and subsequently tested their tolerance to a lethal carbaryl concentration using time-to-death assays. We observed induced carbaryl tolerance in tadpoles exposed to 0.5 mg/L carbaryl and also in tadpoles exposed to predator cues. Our results suggest that the ability to induce pesticide tolerance likely arose through evolved antipredator responses. Given that antipredator responses are widespread among species, many animals might possess inducible pesticide tolerance, buffering them from agrochemical exposure.


Subject(s)
Adaptation, Physiological , Agrochemicals , Ranidae , Animals , Carbaryl , Food Chain , Larva , Pesticides
7.
Ecol Evol ; 7(15): 5774-5783, 2017 08.
Article in English | MEDLINE | ID: mdl-28808548

ABSTRACT

Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high-dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade-off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.

8.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28701562

ABSTRACT

Animal populations are regulated by the combined effects of top-down, bottom-up and abiotic processes. Ecologists have struggled to isolate these mechanisms because their effects on prey behaviour, nutrition, security and fitness are often interrelated. We monitored how forage, non-consumptive effects (NCEs), consumptive predation and climatic conditions influenced the demography and nutritional state of a wild prey population during predator recolonization. Combined measures of nutrition, survival and population growth reveal that predators imposed strong effects on the prey population through interacting non-consumptive and consumptive effects, and forage mechanisms. Predation was directly responsible for adult survival, while declining recruitment was attributed to predation risk-sensitive foraging, manifested in poor female nutrition and juvenile recruitment. Substituting nutritional state into the recruitment model through a shared term reveals that predation risk-sensitive foraging was nearly twice as influential as summer forage conditions. Our findings provide a novel, mechanistic insight into the complex means by which predators and forage conditions affect prey populations, and point to a need for more ecological studies that integrate behaviour, nutrition and demography. This line of inquiry can provide further insight into how NCEs interactively contribute to the dynamics of terrestrial prey populations; particularly, how predation risk-sensitive foraging has the potential to stabilize predator-prey coexistence.


Subject(s)
Food Chain , Nutritional Status , Predatory Behavior , Animals , Appetitive Behavior , Female , Population Dynamics , Population Growth , Risk
9.
Ecology ; 98(6): 1651-1659, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369846

ABSTRACT

Habitat heterogeneity is a primary mechanism influencing species richness. Despite the general expectation that increased heterogeneity should increase species richness, there is considerable variation in the observed relationship, including many studies that show negative effects of heterogeneity on species richness. One mechanism that can create such disparate results is the predicted trade-off between habitat area and heterogeneity, sometimes called the area-heterogeneity-trade-off (AHTO) hypothesis. The AHTO hypothesis predicts positive effects of heterogeneity on species richness in large habitats, but negative effects in small habitats. We examined the interplay between habitat size and habitat heterogeneity in experimental mesocosms that mimic freshwater ponds, and measured responses in a species-rich zooplankton community. We used the AHTO hypothesis and related mechanisms to make predictions about how heterogeneity would affect species richness and diversity in large compared to small habitats. We found that heterogeneity had a positive influence on species richness in large, but not small habitats, and that this likely resulted because habitat specialists were able to persist only when habitat size was sufficiently large, consistent with the predictions of the AHTO hypothesis. Our results emphasize the importance of considering context (e.g., habitat size in this case) when investigating the relative importance of ecological drivers of diversity, like heterogeneity.


Subject(s)
Ecosystem , Models, Theoretical , Zooplankton , Animals , Biodiversity , Fresh Water , Ponds
10.
Ecol Appl ; 27(3): 833-844, 2017 04.
Article in English | MEDLINE | ID: mdl-27992971

ABSTRACT

The application of road deicing salts in northern regions worldwide is changing the chemical environment of freshwater ecosystems. Chloride levels in many lakes, streams, and wetlands exceed the chronic and acute thresholds established by the United States and Canada for the protection of freshwater biota. Few studies have identified the impacts of deicing salts in stream and wetland communities and none have examined impacts in lake communities. We tested how relevant concentrations of road salt (15, 100, 250, 500, and 1000 mg Cl- /L) interacted with experimental communities containing two or three trophic levels (i.e., no fish vs. predatory fish). We hypothesized that road salt and fish would have a negative synergistic effect on zooplankton, which would then induce a trophic cascade. We tested this hypothesis in outdoor mesocosms containing filamentous algae, periphyton, phytoplankton, zooplankton, several macroinvertebrate species, and fish. We found that the presence of fish and high salt had a negative synergistic effect on the zooplankton community, which in turn caused an increase in phytoplankton. Contributing to the magnitude of this trophic cascade was a direct positive effect of high salinity on phytoplankton abundance. Cascading effects were limited with respect to impacts on the benthic food web. Periphyton and snail grazers were unaffected by the salt-induced trophic cascade, but the biomass of filamentous algae decreased as a result of competition with phytoplankton for light or nutrients. We also found direct negative effects of high salinity on the biomass of filamentous algae and amphipods (Hyalella azteca) and the mortality of banded mystery snails (Viviparus georgianus) and fingernail clams (Sphaerium simile). Clam mortality was dependent on the presence of fish, suggesting a non-consumptive interactive effect with salt. Our results indicate that globally increasing concentrations of road salt can alter community structure via both direct and indirect effects.


Subject(s)
Calcium Chloride/adverse effects , Food Chain , Lakes/chemistry , Magnesium Chloride/adverse effects , Sodium Chloride/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , Biota/drug effects , Dose-Response Relationship, Drug , Fishes , New York , Periphyton/drug effects , Phytoplankton/drug effects , Salinity , Zooplankton/drug effects
11.
Environ Pollut ; 221: 159-167, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27939632

ABSTRACT

The application of road deicing salts has led to the salinization of freshwater ecosystems in northern regions worldwide. Increased chloride concentrations in lakes, streams, ponds, and wetlands may negatively affect freshwater biota, potentially threatening ecosystem services. In an effort to reduce the effects of road salt, operators have increased the use of salt alternatives, yet we lack an understanding of how these deicers affect aquatic communities. We examined the direct and indirect effects of the most commonly used road salt (NaCl) and a proprietary salt mixture (NaCl, KCl, MgCl2), at three environmentally relevant concentrations (150, 470, and 780 mg Cl-/L) on freshwater wetland communities in combination with one of three biotic stressors (control, predator cues, and competitors). The communities contained periphyton, phytoplankton, zooplankton, and two tadpole species (American toads, Anaxyrus americanus; wood frogs, Lithobates sylvaticus). Overall, we found the two road salts did not interact with the natural stressors. Both salts decreased pH and reduced zooplankton abundance. The strong decrease in zooplankton abundance in the highest NaCl concentration caused a trophic cascade that resulted in increased phytoplankton abundance. The highest NaCl concentration also reduced toad activity. For the biotic stressors, predatory stress decreased whereas competitive stress increased the activity of both tadpole species. Wood frog survival, time to metamorphosis, and mass at metamorphosis all decreased under competitive stress whereas toad time to metamorphosis increased and mass at metamorphosis decreased. Road salts and biotic stressors can both affect freshwater communities, but their effects are not interactive.


Subject(s)
Environmental Monitoring , Salts/toxicity , Water Pollutants, Chemical/toxicity , Wetlands , Animals , Bufonidae , Ecosystem , Fresh Water , Larva/drug effects , Magnesium Chloride , Metamorphosis, Biological/drug effects , Phytoplankton/drug effects , Ponds , Ranidae , Salts/analysis , Sodium Chloride , Water Pollutants, Chemical/analysis , Zooplankton/drug effects
12.
Environ Toxicol Chem ; 36(3): 771-779, 2017 03.
Article in English | MEDLINE | ID: mdl-27775179

ABSTRACT

As the numbers of chemical contaminants in freshwater ecosystems increase, it is important to understand whether contaminants interact in ecologically important ways. The present study investigated the independent and interactive effects of 2 contaminants that frequently co-occur in freshwater environments among higher latitudes, including a commonly applied insecticide (carbaryl) and road salt (NaCl). The hypothesis was that the addition of either contaminant would result in a decline in zooplankton, an algal bloom, and the subsequent decline of both periphyton and periphyton consumers. Another hypothesis was that combining the contaminants would result in synergistic effects on community responses. Outdoor mesocosms were used with communities that included phytoplankton, periphyton, zooplankton, amphipods, clams, snails, and tadpoles. Communities were exposed to 4 environmentally relevant concentrations of salt (27 mg Cl- L-1 , 77 mg Cl- L-1 , 277 mg Cl- L-1 , and 727 mg Cl- L-1 ) fully crossed with 4 carbaryl treatments (ethanol, 0 µg L-1 , 5 µg L-1 , and 50 µg L-1 ) over 57 d. Contaminants induced declines in rotifer and cladoceran zooplankton, but only carbaryl induced an algal bloom. Consumers exhibited both positive and negative responses to contaminants, which were likely the result of both indirect community interactions and direct toxicity. In contrast to the hypothesis, no synergistic effects were found, although copepod densities declined when high concentrations of both chemicals were combined. The results suggest that low concentrations of salt and carbaryl are likely to have mostly independent effects on aquatic communities. Environ Toxicol Chem 2017;36:771-779. © 2016 SETAC.


Subject(s)
Aquatic Organisms/drug effects , Carbaryl/toxicity , Insecticides/toxicity , Sodium Chloride/toxicity , Water Pollutants, Chemical/toxicity , Wetlands , Animals , Dose-Response Relationship, Drug , Ecology , Ecosystem , Fresh Water/chemistry , Larva/drug effects , Models, Theoretical , Phytoplankton/drug effects , United States , Zooplankton/drug effects
13.
Proc Natl Acad Sci U S A ; 113(38): 10595-600, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601639

ABSTRACT

Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales.


Subject(s)
Behavior, Animal/physiology , Body Temperature Regulation/physiology , Lizards/physiology , Models, Theoretical , Animals , Climate Change , Environment , Temperature
14.
PLoS One ; 6(6): e20905, 2011.
Article in English | MEDLINE | ID: mdl-21698113

ABSTRACT

Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber) collected from a highly seasonal environment to four thermal treatments: (1) a constant 20°C; (2) a constant 10°C; (3) a steady decline from 20° to 10°C; and (4) a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time). Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33° to 34°C and achieved more than 80% of their maximal speed over a range of 10° to 11°C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20°C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change.


Subject(s)
Adaptation, Physiological , Isopoda/physiology , Locomotion , Stochastic Processes , Animals , Temperature
15.
Front Biosci (Elite Ed) ; 2(3): 861-81, 2010 06 01.
Article in English | MEDLINE | ID: mdl-20515760

ABSTRACT

Biologists usually refer to mammals and birds as homeotherms, but these animals universally experience regional and temporal variations in body temperature. These variations could represent adaptive strategies of heterothermy, which in turn would favor genotypes that function over a wide range of temperatures. This coadaptation of thermoregulation and thermosensitivity has been studied extensively among ectotherms, but remains unexplored among endotherms. In this review, we apply classical models of thermal adaptation to predict variation in body temperature within and among populations of mammals and birds. We then relate these predictions to observations generated by comparative and experimental studies. In general, optimality models can explain the qualitative effects of abiotic and biotic factors on thermoregulation. Similar insights should emerge when using models to predict variation in the thermosensitivity of endotherms, but the dearth of empirical data on this subject precludes a rigorous analysis at this time. Future research should focus on the selective pressures imposed by regional and temporal heterothermy in endotherms.


Subject(s)
Biological Evolution , Body Temperature Regulation , Adaptation, Physiological , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...