Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; : e0029424, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829139

ABSTRACT

Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens are capable of inducing efficacious humoral and cellular immune responses in nonhuman primates. Several studies have evaluated the use of immune modulators to further enhance vaccine-induced T-cell responses. The hematopoietic growth factor Flt3L drives the expansion of various bone marrow progenitor populations, and administration of Flt3L was shown to promote expansion of dendritic cell populations in spleen and blood, which are targets of arenaviral vectors. Therefore, we evaluated the potential of Flt3 signaling to enhance the immunogenicity of arenaviral vaccines encoding SIV immunogens (SIVSME543 Gag, Env, and Pol) in rhesus macaques, with a rhesus-specific engineered Flt3L-Fc fusion protein. In healthy animals, administration of Flt3L-Fc led to a 10- to 100-fold increase in type 1 dendritic cells 7 days after dosing, with no antidrug antibody (ADA) generation after repeated dosing. We observed that administration of Flt3L-Fc fusion protein 7 days before arenaviral vaccine increased the frequency and activation of innate immune cells and enhanced T-cell activation with no treatment-related adverse events. Flt3L-Fc administration induced early innate immune activation, leading to a significant enhancement in magnitude, breadth, and polyfunctionality of vaccine-induced T-cell responses. The Flt3L-Fc enhancement in vaccine immunogenicity was comparable to a combination with αCTLA-4 and supports the use of safe and effective variants of Flt3L to augment therapeutic vaccine-induced T-cell responses.IMPORTANCEInduction of a robust human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell response through therapeutic vaccination is considered essential for HIV cure. Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens have demonstrated strong immunogenicity and efficacy in nonhuman primates. Here, we demonstrate that the immunogenicity of arenaviral vectors encoding SIV immunogens can be enhanced by administration of Flt3L-Fc fusion protein 7 days before vaccination. Flt3L-Fc-mediated increase in dendritic cells led to robust improvements in vaccine-induced T- and B-cell responses compared with vaccine alone, and Flt3L-Fc dosing was not associated with any treatment-related adverse events. Importantly, immune modulation by either Flt3L-Fc or αCTLA-4 led to comparable enhancement in vaccine response. These results indicate that the addition of Flt3L-Fc fusion protein before vaccine administration can significantly enhance vaccine immunogenicity. Thus, safe and effective Flt3L variants could be utilized as part of a combination therapy for HIV cure.

2.
Oncoimmunology ; 9(1): 1809960, 2020 09 15.
Article in English | MEDLINE | ID: mdl-33457095

ABSTRACT

Infection with human papillomavirus (HPV) is associated with a variety of cancer types and limited therapy options. Therapeutic cancer vaccines targeting the HPV16 oncoproteins E6 and E7 have recently been extensively explored as a promising immunotherapy approach to drive durable antitumor T cell immunity and induce effective tumor control. With the goal to achieve potent and lasting antitumor T cell responses, we generated a novel lymphocytic choriomeningitis virus (LCMV)-based vaccine, TT1-E7E6, targeting HPV16 E6 and E7. This replication-competent vector was stably attenuated using a three-segmented viral genome packaging strategy. Compared to wild-type LCMV, TT1-E7E6 demonstrated significantly reduced viremia and CNS immunopathology. Intravenous vaccination of mice with TT1-E7E6 induced robust expansion of HPV16-specific CD8+ T cells producing IFN-γ, TNF-α and IL-2. In the HPV16 E6 and E7-expressing TC-1 tumor model, mice immunized with TT1-E7E6 showed significantly delayed tumor growth or complete tumor clearance accompanied with prolonged survival. Tumor control by TT1-E7E6 was also achieved in established large-sized tumors in this model. Furthermore, a combination of TT1-E7E6 with anti-PD-1 therapy led to enhanced antitumor efficacy with complete tumor regression in the majority of tumor-bearing mice that were resistant to anti-PD-1 treatment alone. TT1-E7E6 vector itself did not exhibit oncolytic properties in TC-1 cells, while the antitumor effect was associated with the accumulation of HPV16-specific CD8+ T cells with reduced PD-1 expression in the tumor tissues. Together, our results suggest that TT1-E7E6 is a promising therapeutic vaccine for HPV-positive cancers.


Subject(s)
Papillomavirus Vaccines , Uterine Cervical Neoplasms , Animals , CD8-Positive T-Lymphocytes , Female , Humans , Immunotherapy, Active , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL , Papillomavirus E7 Proteins/genetics , Vaccines, Attenuated
SELECTION OF CITATIONS
SEARCH DETAIL
...