Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(27)2020 07.
Article in English | MEDLINE | ID: mdl-32937450

ABSTRACT

Kv2.1 channels mediate cell death-enabling loss of cytosolic potassium in neurons following plasma membrane insertion at somatodendritic clusters. Overexpression of the carboxyl terminus (CT) of the cognate channel Kv2.2 is neuroprotective by disrupting Kv2.1 surface clusters. Here, we define a seven-amino acid declustering domain within Kv2.2 CT (DP-2) and demonstrate its neuroprotective efficacy in a murine ischemia-reperfusion model. TAT-DP-2, a membrane-permeable derivative, induces Kv2.1 surface cluster dispersal, prevents post-injurious pro-apoptotic potassium current enhancement, and is neuroprotective in vitro by disrupting the association of Kv2.1 with VAPA. TAT-DP-2 also induces Kv2.1 cluster dispersal in vivo in mice, reducing infarct size and improving long-term neurological function following stroke. We suggest that TAT-DP-2 induces Kv2.1 declustering by disrupting Kv2.1-VAPA association and scaffolding sites required for the membrane insertion of Kv2.1 channels following injury. We present the first evidence of targeted disruption of Kv2.1-VAPA association as a neuroprotective strategy following brain ischemia.


Subject(s)
Ischemic Stroke , Shab Potassium Channels , Animals , Mice , Neurons/physiology , Neuroprotection , Potassium/metabolism , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism
2.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854248

ABSTRACT

Achieving neuroprotection in ischemic stroke patients has been a multidecade medical challenge. Numerous clinical trials were discontinued in futility and many were terminated in response to deleterious treatment effects. Recently, however, several positive reports have generated the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical studies that significantly expanded the time window of eligibility for patients to receive mechanical endovascular thrombectomy. We further summarize the results available thus far for nerinetide, a promising neuroprotective agent for stroke treatment. Lastly, we reflect upon aspects of these impactful trials in our own studies targeting the Kv2.1-mediated cell death pathway in neurons for neuroprotection. We argue that recent changes in the clinical landscape should be adapted by preclinical research in order to continue progressing toward the development of efficacious neuroprotective therapies for ischemic stroke.


Subject(s)
Ischemic Stroke/prevention & control , Molecular Targeted Therapy/methods , Shab Potassium Channels/metabolism , Animals , Clinical Trials as Topic , Combined Modality Therapy , Humans , Ischemic Stroke/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Thrombectomy
3.
Brain ; 142(10): 3009-3027, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31504254

ABSTRACT

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.


Subject(s)
Epilepsy, Generalized/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Adult , Amino Acid Sequence/genetics , Animals , Child , Child, Preschool , Epilepsy, Generalized/physiopathology , Female , Gene Expression Regulation/genetics , Glutamic Acid/metabolism , HEK293 Cells , Humans , Male , Neurons/metabolism , Polymorphism, Single Nucleotide/genetics , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/genetics
4.
J Pharmacol Exp Ther ; 367(2): 348-355, 2018 11.
Article in English | MEDLINE | ID: mdl-30190339

ABSTRACT

We present the design of an innovative molecular neuroprotective strategy and provide proof-of-concept for its implementation, relying on the injury-mediated activation of an ectopic gene construct. As oxidative injury leads to the intracellular liberation of zinc, we hypothesize that tapping onto the zinc-activated metal regulatory element (MRE) transcription factor 1 system to drive expression of the Kv2.1-targeted hepatitis C protein NS5A (hepatitis C nonstructural protein 5A) will provide neuroprotection by preventing cell death-enabling cellular potassium loss in rat cortical neurons in vitro. Indeed, using biochemical and morphologic assays, we demonstrate rapid expression of MRE-driven products in neurons. Further, we report that MRE-driven NS5A expression, induced by a slowly evolving excitotoxic stimulus, functionally blocks injurious, enhanced Kv2.1 potassium whole-cell currents and improves neuronal viability. We suggest this form of "on-demand" neuroprotection could provide the basis for a tenable therapeutic strategy to prevent neuronal cell death in neurodegeneration.


Subject(s)
Hepacivirus/metabolism , Hepatitis C/metabolism , Neuroprotection/drug effects , Shab Potassium Channels/metabolism , Viral Nonstructural Proteins/metabolism , Zinc/pharmacology , Animals , Cell Death/drug effects , Cell Survival/drug effects , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Female , Hepatitis C/virology , Male , Neurons/drug effects , Neurons/metabolism , Potassium/metabolism , Protein Transport/drug effects , Rats
5.
Neuroscience ; 354: 158-167, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28461216

ABSTRACT

As the predominant mediator of the delayed rectifier current, KV2.1 is an important regulator of neuronal excitability. KV2.1, however, also plays a well-established role in apoptotic cell death. Apoptogenic stimuli induce syntaxin-dependent trafficking of KV2.1, resulting in an augmented delayed rectifier current that acts as a conduit for K+ efflux required for pro-apoptotic protease/nuclease activation. Recent evidence suggests that KV2.1 somato-dendritic clusters regulate the formation of endoplasmic reticulum-plasma membrane junctions that function as scaffolding sites for plasma membrane trafficking of ion channels, including KV2.1. However, it is unknown whether KV2.1 somato-dendritic clusters are required for apoptogenic trafficking of KV2.1. By overexpression of a protein derived from the C-terminus of the cognate channel KV2.2 (KV2.2CT), we induced calcineurin-independent disruption of KV2.1 somato-dendritic clusters in rat cortical neurons, without altering the electrophysiological properties of the channel. We observed that KV2.2CT-expressing neurons are less susceptible to oxidative stress-induced cell death. Critically, expression of KV2.2CT effectively blocked the increased current density of the delayed rectifier current associated with oxidative injury, supporting a vital role of KV2.1-somato-dendritic clusters in apoptogenic increases in KV2.1-mediated currents.


Subject(s)
Apoptosis/genetics , Dendrites/metabolism , Neurons/cytology , Shab Potassium Channels/metabolism , Animals , Apoptosis/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cholinesterase Inhibitors/pharmacology , Cricetulus , Dendrites/genetics , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Ethylenediamines/pharmacology , Female , Immunosuppressive Agents/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/genetics , Microglia/metabolism , Neurons/physiology , Pregnancy , Pyridines/toxicity , Rats , Shab Potassium Channels/genetics , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology
6.
PLoS Genet ; 13(1): e1006536, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28095420

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.


Subject(s)
Ion Channel Gating , Mutation, Missense , Nerve Tissue Proteins/metabolism , Nervous System Diseases/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cells, Cultured , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , HEK293 Cells , Humans , Memantine/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/physiology , Protein Domains , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus
7.
Am J Hum Genet ; 99(4): 802-816, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27616483

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.


Subject(s)
Genes, Dominant/genetics , Mutation , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spasms, Infantile/drug therapy , Spasms, Infantile/genetics , Amino Acid Sequence , Base Sequence , Cell Death , Child , DNA Mutational Analysis , Dendrites/pathology , Electroencephalography , Exome/genetics , Female , Glutamic Acid/metabolism , Humans , Infant , Infant, Newborn , Ketamine/therapeutic use , Magnesium/therapeutic use , Memantine/administration & dosage , Memantine/therapeutic use , Models, Molecular , Precision Medicine , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/drug therapy , Seizures/genetics , Seizures/metabolism , Spasms, Infantile/metabolism
8.
J Physiol ; 594(10): 2647-59, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26939666

ABSTRACT

KEY POINTS: Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.1 channel modulation is dependent on calcineurin, a Ca(2+) -activated phosphatase. We show that intracellular Zn(2+) induces a significant increase in ryanodine receptor-dependent cytosolic Ca(2+) transients, which leads to a calcineurin-dependent redistribution of Kv2.1 channels from pre-existing membrane clusters to diffuse localization. As such, the link between Zn(2+) and Ca(2+) signalling in this Kv2.1 modulatory pathway is established. We observe that a sublethal ischaemic preconditioning insult also leads to Kv2.1 redistribution in a ryanodine receptor-dependent fashion. We suggest that Zn(2+) may be an early and ubiquitous signalling molecule mediating Ca(2+) release from the cortical endoplasmic reticulum via ryanodine receptor activation. ABSTRACT: Sublethal injurious stimuli in neurons induce transient increases in free intracellular Zn(2+) that are associated with regulating adaptive responses to subsequent lethal injury, including alterations in the function and localization of the delayed-rectifier potassium channel, Kv2.1. However, the link between intracellular Zn(2+) signalling and the observed changes in Kv2.1 remain undefined. In the present study, utilizing exogenous Zn(2+) treatment, along with a selective Zn(2+) ionophore, we show that transient elevations in intracellular Zn(2+) concentrations are sufficient to induce calcineurin-dependent Kv2.1 channel dispersal in rat cortical neurons in vitro, which is accompanied by a relatively small but significant hyperpolarizing shift in the voltage-gated activation kinetics of the channel. Critically, using a molecularly encoded calcium sensor, we found that the calcineurin-dependent changes in Kv2.1 probably occur as a result of Zn(2+) -induced cytosolic Ca(2+) release via activation of neuronal ryanodine receptors. Finally, we couple this mechanism with an established model for in vitro ischaemic preconditioning and show that Kv2.1 channel modulation in this process is also ryanodine receptor-sensitive. Our results strongly suggest that intracellular Zn(2+) -initiated signalling may represent an early and possibly widespread component of Ca(2+) -dependent processes in neurons.


Subject(s)
Calcineurin/pharmacology , Calcium/metabolism , Cerebral Cortex/metabolism , Chlorides/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Shab Potassium Channels/metabolism , Zinc Compounds/pharmacology , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Female , Male , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology
9.
J Neurosci ; 34(12): 4326-31, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24647953

ABSTRACT

Kv2.1 is a major delayed rectifying K(+) channel normally localized to highly phosphorylated somatodendritic clusters in neurons. Excitatory stimuli induce calcineurin-dependent dephosphorylation and dispersal of Kv2.1 clusters, with a concomitant hyperpolarizing shift in the channel's activation kinetics. We showed previously that sublethal ischemia, which renders neurons transiently resistant to excitotoxic cell death, can also induce Zn(2+)-dependent changes in Kv2.1 localization and activation kinetics, suggesting that activity-dependent modifications of Kv2.1 may contribute to cellular adaptive responses to injury. Recently, cyclin-dependent kinase 5 (Cdk5) was shown to phosphorylate Kv2.1, with pharmacological Cdk5 inhibition being sufficient to decluster channels. In another study, cyclin E1 was found to restrict neuronal Cdk5 kinase activity. We show here that cyclin E1 regulates Kv2.1 cellular localization via inhibition of Cdk5 activity. Expression of cyclin E1 in human embryonic kidney cells prevents Cdk5-mediated phosphorylation of Kv2.1, and cyclin E1 overexpression in rat cortical neurons triggers dispersal of Kv2.1 channel clusters. Sublethal ischemia in neurons induces calcineurin-dependent upregulation of cyclin E1 protein expression and cyclin E1-dependent Kv2.1 channel declustering. Importantly, overexpression of cyclin E1 in neurons is sufficient to reduce excitotoxic cell death. These results support a novel role for neuronal cyclin E1 in regulating the phosphorylation status and localization of Kv2.1 channels, a likely component of signaling cascades leading to ischemic preconditioning.


Subject(s)
Brain Ischemia/metabolism , Cyclins/metabolism , Neurons/metabolism , Shab Potassium Channels/metabolism , Animals , Cell Death/physiology , Cells, Cultured , Cyclin-Dependent Kinase 5/metabolism , HEK293 Cells , Humans , Ischemic Preconditioning , Phosphorylation , Phosphotransferases/metabolism , Rats , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...