Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 20(4): 413-22, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10607294

ABSTRACT

Retrotransposons are ubiquitous and major components of plant genomes, and are characteristically retroviral-like in their genomic structure and in the major proteins encoded. Nevertheless, few have been directly demonstrated to be transcribed or reverse transcribed. The BARE-1 retrotransposon family of barley (Hordeum vulgare) is highly prevalent, actively transcribed, and contains well conserved functional regions. Insertion sites for BARE-1 are highly polymorphic in the barley genome. Here we show that BARE-1 is translated and the capsid protein (GAG) and integrase (IN) components of the predicted polyprotein are processed into polypeptides of expected size. Some of the GAG sediments as virus-like particles together with IN and with BARE-1 cDNA. Reverse transcriptase activity is also present in gradient fractions containing BARE-1 translation products. Virus-like particles have also been visualized in fractions containing BARE-1 components. Thus BARE-1 components necessary for carrying out the life cycle of an active retrotransposon appear to be present in vivo, and to assemble. This would suggest that post-translational mechanisms may be at work to prevent rapid genome inflation through unrestricted integration.

2.
Plant Cell ; 11(9): 1769-1784, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10488242

ABSTRACT

The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."

SELECTION OF CITATIONS
SEARCH DETAIL
...