Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 124(Pt 7): 1167-74, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21385843

ABSTRACT

Standard local control theory, which describes Ca(2+) release during excitation-contraction coupling (ECC), assumes that all ryanodine receptor 2 (RyR2) complexes are equivalent. Findings from our laboratory have called this assumption into question. Specifically, we have shown that the RyR2 complexes in ventricular myocytes are different, depending on their location within the cell. This has led us to hypothesize that similar differences occur within the rat atrial cell. To test this hypothesis, we have triple-labelled enzymatically isolated fixed myocytes to examine the distribution and colocalization of RyR2, calsequestrin (Casq), voltage-gated Ca(2+) channels (Ca(v)1.2), the sodium-calcium exchanger (Ncx) and caveolin-3 (Cav3). A number of different surface RyR2 populations were identified, and one of these groups, in which RyR2, Ca(v)1.2 and Ncx colocalized, might provide the structural basis for 'eager' sites of Ca(2+) release in atria. A small percentage of the dyads containing RyR2 and Ca(v)1.2 were colocalized with Cav3, and therefore could be influenced by the signalling molecules it anchors. The majority of the RyR2 clusters were tightly linked to Ca(v)1.2, and, whereas some were coupled to both Ca 1.2 and Ncx, none were with Ncx alone. This suggests that Ca(v)1.2-mediated Ca(2+) -induced Ca(2+) release is the primary method of ECC. The two molecules studied that were found in the interior of atrial cells, RyR2 and Casq, showed significantly less colocalization and a reduced nearest-neighbour distance in the interior, compared with the surface of the cell. These differences might result in a higher excitability for RyR2 in the interior of the cells, facilitating the spread of excitation from the periphery to the centre. We also present morphometric data for all of the molecules studied, as well as for those colocalizations found to be significant.


Subject(s)
Heart Atria/metabolism , Animals , Calcium/metabolism , Calsequestrin/metabolism , Cells, Cultured , Male , Myocytes, Cardiac/metabolism , Potassium Channels, Voltage-Gated/metabolism , Protein Transport , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism
2.
Biophys J ; 99(12): 3923-9, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21156134

ABSTRACT

We analyzed the distribution of ryanodine receptor (RyR) and Cav1.2 clusters in adult rat ventricular myocytes using three-dimensional object-based colocalization metrics. We found that ∼75% of the Cav1.2 clusters and 65% of the RyR clusters were within couplons, and both were roughly two and a half times larger than their extradyadic counterparts. Within a couplon, Cav1.2 was concentrated near the center of the underlying RyR cluster and accounted for ∼67% of its size. These data, together with previous findings from binding studies, enable us to estimate that a couplon contains 74 RyR tetramers and 10 copies of the α-subunit of Cav1.2. Extradyadic clusters of RyR contained ∼30 tetramers, whereas the extradyadic Cav1.2 clusters contained, on average, only four channels. Between 80% and 85% of both RyR and Cav1.2 molecules are within couplons. RyR clusters were in the closest proximity, with a median nearest-neighbor distance of 552 nm; comparable values for Cav1.2 clusters and couplons were 619 nm and 735 nm, respectively. Extradyadic RyR clusters were significantly closer together (624 nm) and closer to the couplons (674 nm) than the couplons were to each other. In contrast, the extradyadic clusters of Cav1.2 showed no preferential localization and were broadly distributed. These results provide a wealth of morphometric data that are essential for understanding intracellular Ca2+ regulation and modeling Ca2+ dynamics.


Subject(s)
Calcium Channels, L-Type/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Cluster Analysis , Heart Ventricles , Male , Myocytes, Cardiac/cytology , Rats , Rats, Wistar , Staining and Labeling
3.
Biophys J ; 99(6): 1996-2005, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20858446

ABSTRACT

Accurately localizing molecules within the cell is one of main tasks of modern biology, and colocalization analysis is one of its principal and most often used tools. Despite this popularity, interpretation is often uncertain because colocalization between two or more images is rarely analyzed to determine whether the observed values could have occurred by chance. To address this, we have developed a robust methodology, based on Monte Carlo randomization, to measure the statistical significance of a colocalization. The method works with voxel-based, intensity-based, object-based, and nearest-neighbor metrics. We extend all of these to measure colocalization in images with three colors. We also introduce three new metrics; blob colocalization, where the blob consists of a local maximum surrounded by a three-dimensional group of voxels; cluster diameter, to measure the clustering of fluorophores in three or more images; and the intercluster distance to measure the distance between these clusters. The robustness of these metrics was tested by varying the image thresholds over a broad range, which produced no change in the statistical significance of the colocalizations. A comparison of blob colocalization with voxel and Manders colocalization metrics shows that the different measures produce consistent results with similar values for significance and nonsignificance. Using our methodology, we are able to determine not only whether the labeled molecules colocalize with a probability greater than chance, but also whether they are sequestrated into different compartments. The program, written in C++, is freely available as source, as well as in a Linux version.


Subject(s)
Molecular Imaging/methods , Molecular Imaging/statistics & numerical data , Animals , Calcium Channels, L-Type/metabolism , Heart Atria/cytology , Monte Carlo Method , Muscle Cells/cytology , Muscle Cells/metabolism , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...