Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674956

ABSTRACT

In contrast to bacteria, microbiome analyses often neglect archaea, but also eukaryotes. This is partly because they are difficult to culture due to their demanding growth requirements, or some even have to be classified as uncultured microorganisms. Consequently, little is known about the relevance of archaea in human health and diseases. Contemporary broad availability and spread of next generation sequencing techniques now enable a stronger focus on such microorganisms, whose cultivation is difficult. However, due to the enormous evolutionary distances between bacteria, archaea and eukaryotes, the implementation of sequencing strategies for smaller laboratory scales needs to be refined to achieve as a holistic view on the microbiome as possible. Here, we present a technical approach that enables simultaneous analyses of archaeal, bacterial and eukaryotic microbial communities to study their roles in development and courses of respiratory disorders. We thus applied combinatorial 16S-/18S-rDNA sequencing strategies for sequencing-library preparation. Considering the lower total microbiota density of airway surfaces, when compared with gut microbiota, we optimized the DNA purification workflow from nasopharyngeal swab specimens. As a result, we provide a protocol that allows the efficient combination of bacterial, archaeal, and eukaryotic libraries for nanopore-sequencing using Oxford Nanopore Technologies MinION devices and subsequent phylogenetic analyses. In a pilot study, this workflow allowed the identification of some environmental archaea, which were not correlated with airway microbial communities before. Moreover, we assessed the protocol's broader applicability using a set of human stool samples. We conclude that the proposed protocol provides a versatile and adaptable tool for combinatorial studies on bacterial, archaeal, and eukaryotic microbiomes on a small laboratory scale.


Subject(s)
Microbiota , Nanopores , Humans , Archaea/genetics , Eukaryota/genetics , Phylogeny , DNA, Ribosomal , Pilot Projects , Microbiota/genetics , Bacteria , Nasopharynx , RNA, Ribosomal, 16S/genetics
2.
Cells ; 11(8)2022 04 10.
Article in English | MEDLINE | ID: mdl-35455967

ABSTRACT

Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.


Subject(s)
Asthma , Microbiota , Mycobiome , Archaea , Bacteria , Child , Eukaryota , Fungi , Humans
3.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: mdl-35336898

ABSTRACT

Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.


Subject(s)
Asthma , Bronchitis , Enterovirus Infections , Enterovirus , Picornaviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Asthma/epidemiology , Biomarkers , Child , Humans , Infant , Respiratory Tract Infections/epidemiology , Rhinovirus
4.
Mol Cell Pediatr ; 8(1): 4, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33893880

ABSTRACT

BACKGROUND: Reverse transcription of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (+)RNA genome and subgenomic RNAs (sgRNAs) and subsequent quantitative polymerase chain reaction (RT-qPCR) is the reliable diagnostic gold standard for COVID-19 diagnosis and the identification of potential spreaders. Apart from clinical relevance and containment, for specific questions, it might be of interest to (re)investigate cases with low SARS-CoV-2 load, where RT-qPCR alone can deliver conflicting results, even though these cases might neither be clinically relevant nor significant for containment measures, because they might probably not be infectious. In order to expand the diagnostic bandwidth for non-routine questions, particularly for the reliable discrimination between negative and false-negative specimens associated with high CT values, we combined the RT-qPCR workflow with subsequent pyrosequencing of a S-gene amplicon. This expansion can help to confirm SARS-CoV-2 infections without the demand of confirmative antibody testing, which requires to summon patients again for blood sampling few to several weeks after symptom onset. RESULTS: We successfully established a combined RT-qPCR and S-gene pyrosequencing method which can be optionally exploited after routine diagnostics. This allows a reliable interpretation of RT-qPCR results in specimens with relatively low viral loads and close to the detection limits of qPCR. After laboratory implementation, we tested the combined method in a large pediatric cohort from two German medical centers (n=769). Pyrosequencing after RT-qPCR enabled us to uncover 5 previously unrecognized cases of pediatric SARS-CoV-2-associated diseases, mainly exhibiting mild and heterogeneous presentation-apart from a single case of multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2, who was hospitalized in the course of the study. CONCLUSIONS: The proposed protocol allows a specific and sensitive confirmation of SARS-CoV-2 infections close to the detection limits of RT-qPCR. The tested biotinylated primers do not negatively affect the RT-qPCR pipeline and thus can be optionally applied to enable deeper inspection of RT-qPCR results by subsequent pyrosequencing. Moreover, due to the incremental transmission of SARS-CoV-2 variants of concern, we note that the used strategy can uncover (Spike) P681H allowing the pre-selection of SARS-CoV-2 B.1.1.7 candidate specimens for deep sequencing.

5.
Nat Commun ; 10(1): 1542, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948713

ABSTRACT

Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadRSa) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius. Functional and structural analyses show that FadRSa binds to DNA at semi-palindromic recognition sites in two distinct stoichiometric binding modes depending on the operator sequence. Genome-wide transcriptomic and chromatin immunoprecipitation analyses demonstrate that the protein binds to only four genomic sites, acting as a repressor of a 30-kb gene cluster comprising 23 open reading frames encoding lipases and ß-oxidation enzymes. Fatty acyl-CoA molecules cause dissociation of FadRSa binding by inducing conformational changes in the protein. Our results indicate that, despite its similarity in overall structure to bacterial TetR-family FadR regulators, FadRSa displays a different acyl-CoA binding mode and a distinct regulatory mechanism.


Subject(s)
Bacterial Proteins/physiology , Fatty Acids/metabolism , Sulfolobus acidocaldarius/metabolism , Transcription Factors/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA/metabolism , Gene Expression Regulation, Bacterial , Sulfolobus acidocaldarius/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Nucleic Acids Res ; 46(14): 7179-7192, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29982548

ABSTRACT

Exposure to UV light can result in severe DNA damage. The alternative general transcription factor (GTF) TFB3 has been proposed to play a key role in the UV stress response in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Reporter gene assays confirmed that tfb3 is upregulated 90-180 min after UV treatment. In vivo tagging and immunodetection of TFB3 confirmed the induced expression at 90 min. Analysis of a tfb3 insertion mutant showed that genes encoding proteins of the Ups pili and the Ced DNA importer are no longer induced in a tfb3 insertion mutant after UV treatment, which was confirmed by aggregation assays. Thus, TFB3 plays a crucial role in the activation of these genes. Genome wide transcriptome analysis allowed a differentiation between a TFB3-dependent and a TFB3-independent early UV response. The TFB3-dependent UV response is characterized by the early induction of TFB3, followed by TFB3-dependent expression of genes involved in e.g. Ups pili formation and the Ced DNA importer. Many genes were downregulated in the tfb3 insertion mutant confirming the hypothesis that TFB3 acts as an activator of transcription. The TFB3-independent UV response includes the repression of nucleotide metabolism, replication and cell cycle progression in order to allow DNA repair.


Subject(s)
Archaeal Proteins/genetics , Gene Expression Regulation, Archaeal/radiation effects , Sulfolobus acidocaldarius/radiation effects , Transcription Factors, General/genetics , Ultraviolet Rays , Archaeal Proteins/metabolism , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , Gene Expression Profiling , Mutation , Sulfolobus acidocaldarius/genetics , Transcription Factors, General/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...