Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Dev ; 11: 5, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26896392

ABSTRACT

BACKGROUND: For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. METHODS: In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. RESULTS: We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. CONCLUSIONS: Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.


Subject(s)
Homeodomain Proteins/metabolism , Interneurons/metabolism , Spinal Cord/embryology , Spinal Cord/metabolism , Zebrafish Proteins/metabolism , Animals , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , PAX2 Transcription Factor/metabolism , Zebrafish
2.
Dev Dyn ; 240(5): 1240-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21509898

ABSTRACT

The transcription factor Evx1 is expressed in the joints between individual lepidotrichia (bony ray) segments and at the distal tips of the lepidotrichia in developing zebrafish fins. It is also expressed in the apical growth zone in regenerating fins. However, so far there is no functional evidence that addresses whether Evx1 is required for any aspect of fin development or regeneration. In this study, we use a novel mutation in evx1 to address this. We find that Evx1 is not required for either fin outgrowth or regeneration. All of the fins form normally in evx1 mutants, and there are no significant changes in fin length. In contrast, Evx1 is required for lepidotrichia joint formation during both fin development and regeneration. This is a very specific phenotype as both lepidotrichia hemisegment separations and lepidotrichia bifurcations still form normally in evx1 mutant fins, as do joints in the more proximal endoskeletal radials.


Subject(s)
Animal Fins/metabolism , Homeodomain Proteins/metabolism , Joints/embryology , Joints/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animal Fins/embryology , Animals , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , In Situ Hybridization , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...