Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(5): e0196725, 2018.
Article in English | MEDLINE | ID: mdl-29719007

ABSTRACT

Surveys of restored oyster reefs need to produce accurate population estimates to assess the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effective and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bottom cores. Restored reefs vary in relief and oyster density, either of which could affect survey efficiency. This study is the first to evaluate gear (the first full grab) and survey (which includes selecting a specific half portion of the first grab for further processing) efficiencies of hand-operated patent tongs as a function of reef height and oyster density on subtidal restoration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored reefs of high- and low-relief (25-45 cm, and 8-12 cm, respectively) were constructed throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctuary acreage > 20 ha at one site) in Chesapeake Bay. We designed a metal frame to guide a non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until all oysters within the grab area were captured. Full capture was verified by an underwater remotely-operated vehicle. Samples (n = 19) were taken on nine different reefs, including five low- (n = 8) and four high-relief reefs (n = 11), over a two-year period. The gear efficiency of the patent tong was estimated to be 76% (± 5% standard error), whereas survey efficiency increased to 81% (± 10%) due to processing. Neither efficiency differed significantly between young-of-the-year oysters (spat) and adults, high- and low-relief reefs, or years. As this type of patent tong is a common and cost-effective tool to evaluate oyster restoration projects as well as population density on fished habitat, knowing the gear and survey efficiencies allows for accurate and precise population estimates.


Subject(s)
Environmental Restoration and Remediation , Ostreidae , Animals , Conservation of Natural Resources , Coral Reefs , Environmental Restoration and Remediation/instrumentation , Environmental Restoration and Remediation/methods , Environmental Restoration and Remediation/statistics & numerical data , Ostreidae/growth & development , Population
2.
Sci Rep ; 5: 17890, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26657975

ABSTRACT

Climate change and associated sea level rise (SLR) are already impacting low-lying coastal areas, including islands, throughout the world. Many of these areas are inhabited, many will need to be abandoned in coming decades as SLR continues. We examine the evolution (1850-2013) of the last inhabited offshore island in Virginia waters of Chesapeake Bay USA, the Tangier Islands. Three SLR scenarios, a low, mid, and high, were considered. Since 1850, 66.75% of the islands landmass has been lost. Under the mid-range SLR scenario, much of the remaining landmass is expected to be lost in the next 50 years and the Town will likely need to be abandoned. The high SLR scenario will accelerate the land loss and subsidence, such that the Town may need to be abandoned in as few as 25 years. We propose a conceptual plan that would significantly extend the lifespan of the islands and Town.

3.
Science ; 325(5944): 1124-8, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19644073

ABSTRACT

Native oyster species were once vital ecosystem engineers, but their populations have collapsed worldwide because of overfishing and habitat destruction. In 2004, we initiated a vast (35-hectare) field experiment by constructing native oyster reefs of three types (high-relief, low-relief, and unrestored) in nine protected sanctuaries throughout the Great Wicomico River in Virginia, United States. Upon sampling in 2007 and 2009, we found a thriving metapopulation comprising 185 million oysters of various age classes. Oyster density was fourfold greater on high-relief than on low-relief reefs, explaining the failure of past attempts. Juvenile recruitment and reef accretion correlated with oyster density, facilitating reef development and population persistence. This reestablished metapopulation is the largest of any native oyster worldwide and validates ecological restoration of native oyster species.


Subject(s)
Crassostrea , Ecosystem , Rivers , Animals , Conservation of Natural Resources , Crassostrea/growth & development , Population Density , Population Dynamics , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...