Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Med ; 212(3): 319-32, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25711212

ABSTRACT

Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer's disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD.


Subject(s)
Alzheimer Disease/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Pyridazines/pharmacology , Pyridines/pharmacology , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Animals , Cells, Cultured , Cognition/drug effects , Cognition/physiology , Disease Models, Animal , Excitatory Amino Acid Transporter 2/genetics , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism
2.
J Clin Invest ; 124(3): 1255-67, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24569372

ABSTRACT

Glial glutamate transporter EAAT2 plays a major role in glutamate clearance in synaptic clefts. Several lines of evidence indicate that strategies designed to increase EAAT2 expression have potential for preventing excitotoxicity, which contributes to neuronal injury and death in neurodegenerative diseases. We previously discovered several classes of compounds that can increase EAAT2 expression through translational activation. Here, we present efficacy studies of the compound LDN/OSU-0212320, which is a pyridazine derivative from one of our lead series. In a murine model, LDN/OSU-0212320 had good potency, adequate pharmacokinetic properties, no observed toxicity at the doses examined, and low side effect/toxicity potential. Additionally, LDN/OSU-0212320 protected cultured neurons from glutamate-mediated excitotoxic injury and death via EAAT2 activation. Importantly, LDN/OSU-0212320 markedly delayed motor function decline and extended lifespan in an animal model of amyotrophic lateral sclerosis (ALS). We also found that LDN/OSU-0212320 substantially reduced mortality, neuronal death, and spontaneous recurrent seizures in a pilocarpine-induced temporal lobe epilepsy model. Moreover, our study demonstrated that LDN/OSU-0212320 treatment results in activation of PKC and subsequent Y-box-binding protein 1 (YB-1) activation, which regulates activation of EAAT2 translation. Our data indicate that the use of small molecules to enhance EAAT2 translation may be a therapeutic strategy for the treatment of neurodegenerative diseases.


Subject(s)
Excitatory Amino Acid Transporter 2/genetics , Neuroprotective Agents/pharmacology , Protein Biosynthesis/drug effects , Pyridazines/pharmacology , Pyridines/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/pathology , Animals , Anterior Horn Cells/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line , Coculture Techniques , Enzyme Activation/drug effects , Excitatory Amino Acid Transporter 2/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Mutation, Missense , Neuroprotective Agents/pharmacokinetics , Pilocarpine , Protein Kinase C/metabolism , Pyridazines/pharmacokinetics , Pyridines/pharmacokinetics , Rats , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Tissue Distribution , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL