Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Anat ; 244: 151986, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35914632

ABSTRACT

For medical students the dissection course is the preferred method to learn gross anatomy. However, the added value of active cadaver dissection on knowledge gain in multimodal curricula offering a diversity of e-learning resources is unknown. The Covid-19-related lockdown forced educators to replace the dissection course by e-learning resources. At the end of the summer term 2020 loosening of pandemic-related regulations allowed offering a compact, voluntary active dissection course of the head-neck region to first-year medical students at Hannover Medical School. A study was conducted comparing a dissection group (G1, n = 115) and a non-dissection group (G2, n = 23). Knowledge gain and confidence level were measured with a multiple-choice (MC-)test. The use of e-learning resources was recorded. A questionnaire measured motivation, interest and level of concern regarding Covid-19 and anatomy teaching. No differences between groups were found regarding motivation and interest in anatomy of the head-neck region. G2, however, had significantly higher concerns regarding the Covid-19 pandemic than G1. Neither before nor after the educational intervention, differences in the scores of the MC-test were found. However, after the course G1 answered more MC-questions with highest confidence level than G2 (6.7 ± 6.0 vs. 3.6 ± 4.6, p < 0.05) and demonstrated by trend an increased improvement in the scores of image-based questions (30.8 ± 18.2 % vs. 17.1 ± 14.8 %, p = 0.06). In general, frequent users of online quizzes, a part of the e-learning resources, scored significantly better in the knowledge test. Active dissection improves self-assurance to identify anatomical structures and should be re-implemented in multimodal, blended-learning-based anatomical curricula in the post-pandemic era.


Subject(s)
Anatomy , COVID-19 , Education, Medical, Undergraduate , Students, Medical , Humans , Education, Medical, Undergraduate/methods , Pandemics , Communicable Disease Control , Cadaver , Curriculum , Anatomy/education , Teaching , Educational Measurement
2.
Oxid Med Cell Longev ; 2021: 4293279, 2021.
Article in English | MEDLINE | ID: mdl-34659632

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a complex condition frequently occurring in preterm newborns, and different animal models are currently used to mimic the pathophysiology of BPD. The comparability of animal models depends on the availability of quantitative data obtained by minimally biased methods. Therefore, the aim of this study was to provide the first design-based stereological analysis of the lungs in the hyperoxia-based model of BPD in the preterm rabbit. Rabbit pups were obtained on gestation day 28 (three days before term) by cesarean section and exposed to normoxic (21% O2, n = 8) or hyperoxic (95% O2, n = 8) conditions. After seven days of exposure, lung function testing was performed, and lungs were taken for stereological analysis. In addition, the ratio between pulmonary arterial acceleration and ejection time (PAAT/PAET) was measured. Inspiratory capacity and static compliance were reduced whereas tissue elastance and resistance were increased in hyperoxic animals compared with normoxic controls. Hyperoxic animals showed signs of pulmonary hypertension indicated by the decreased PAAT/PAET ratio. In hyperoxic animals, the number of alveoli and the alveolar surface area were reduced by one-third or by approximately 50% of control values, respectively. However, neither the mean linear intercept length nor the mean alveolar volume was significantly different between both groups. Hyperoxic pups had thickened alveolar septa and intra-alveolar accumulation of edema fluid and inflammatory cells. Nonparenchymal blood vessels had thickened walls, enlarged perivascular space, and smaller lumen in hyperoxic rabbits in comparison with normoxic ones. In conclusion, the findings are in line with the pathological features of human BPD. The stereological data may serve as a reference to compare this model with BPD models in other species or future therapeutic interventions.


Subject(s)
Bronchopulmonary Dysplasia/pathology , Hyperoxia/pathology , Lung/pathology , Animals , Animals, Newborn , Disease Models, Animal , Rabbits
3.
BMC Vet Res ; 17(1): 175, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902575

ABSTRACT

BACKGROUND: Ischaemic postconditioning (IPoC) refers to brief periods of reocclusion of blood supply following an ischaemic event. This has been shown to ameliorate ischaemia reperfusion injury in different tissues, and it may represent a feasible therapeutic strategy for ischaemia reperfusion injury following strangulating small intestinal lesions in horses. The objective of this study was to assess the degree cell death, inflammation, oxidative stress, and heat shock response in an equine experimental jejunal ischaemia model with and without IPoC. METHODS: In this randomized, controlled, experimental in vivo study, 14 horses were evenly assigned to a control group and a group subjected to IPoC. Under general anaesthesia, segmental ischaemia with arterial and venous occlusion was induced in 1.5 m jejunum. Following ischaemia, the mesenteric vessels were repeatedly re-occluded in group IPoC only. Full thickness intestinal samples and blood samples were taken at the end of the pre-ischaemia period, after ischaemia, and after 120 min of reperfusion. Immunohistochemical staining or enzymatic assays were performed to determine the selected variables. RESULTS: The mucosal cleaved-caspase-3 and TUNEL cell counts were significantly increased after reperfusion in the control group only. The cleaved-caspase-3 cell count was significantly lower in group IPoC after reperfusion compared to the control group. After reperfusion, the tissue myeloperoxidase activity and the calprotectin positive cell counts in the mucosa were increased in both groups, and only group IPoC showed a significant increase in the serosa. Tissue malondialdehyde and superoxide dismutase as well as blood lactate levels showed significant progression during ischaemia or reperfusion. The nuclear immunoreactivity of Heat shock protein-70 increased significantly during reperfusion. None of these variables differed between the groups. The neuronal cell counts in the myenteric plexus ganglia were not affected by the ischaemia model. CONCLUSIONS: A reduced apoptotic cell count was found in the group subjected to IPoC. None of the other tested variables were significantly affected by IPoC. Therefore, the clinical relevance and possible protective mechanism of IPoC in equine intestinal ischaemia remains unclear. Further research on the mechanism of action and its effect in clinical cases of strangulating colic is needed.


Subject(s)
Apoptosis , Ischemic Postconditioning/veterinary , Jejunum/blood supply , Reperfusion Injury/veterinary , Animals , HSP70 Heat-Shock Proteins/metabolism , Horses , Intestinal Mucosa/metabolism , Ischemic Postconditioning/methods , Jejunum/pathology , Lactic Acid/blood , Malondialdehyde/metabolism , Reperfusion Injury/therapy , Superoxide Dismutase/metabolism
4.
Front Physiol ; 10: 1466, 2019.
Article in English | MEDLINE | ID: mdl-31866873

ABSTRACT

Lung function declines with advancing age. To improve our understanding of the structure-function relationships leading to this decline, we investigated structural alterations in the lung and their impact on micromechanics and lung function in the aging mouse. Lung function analysis was performed in 3, 6, 12, 18, and 24 months old C57BL/6 mice (n = 7-8/age), followed by lung fixation and stereological sample preparation. Lung parenchymal volume, total, ductal and alveolar airspace volume, alveolar volume and number, septal volume, septal surface area and thickness were quantified by stereology as well as surfactant producing alveolar epithelial type II (ATII) cell volume and number. Parenchymal volume, total and ductal airspace volume increased in old (18 and 24 months) compared with middle-aged (6 and 12 months) and young (3 months) mice. While the alveolar number decreased from young (7.5 × 106) to middle-aged (6 × 106) and increased again in old (9 × 106) mice, the mean alveolar volume and mean septal surface area per alveolus conversely first increased in middle-aged and then declined in old mice. The ATII cell number increased from middle-aged (8.8 × 106) to old (11.8 × 106) mice, along with the alveolar number, resulting in a constant ratio of ATII cells per alveolus in all age groups (1.4 ATII cells per alveolus). Lung compliance and inspiratory capacity increased, whereas tissue elastance and tissue resistance decreased with age, showing greatest changes between young and middle-aged mice. In conclusion, alveolar size declined significantly in old mice concomitant with a widening of alveolar ducts and late alveolarization. These changes may partly explain the functional alterations during aging. Interestingly, despite age-related lung remodeling, the number of ATII cells per alveolus showed a tightly controlled relation in all age groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...