Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 87, 2020.
Article in English | MEDLINE | ID: mdl-32117117

ABSTRACT

In Corynebacterium glutamicum, cyclic adenosine monophosphate (cAMP) serves as an effector of the global transcriptional regulator GlxR. Synthesis of cAMP is catalyzed by the membrane-bound adenylate cyclase CyaB. In this study, we investigated the consequences of decreased intracellular cAMP levels in a ΔcyaB mutant. While no growth defect of the ΔcyaB strain was observed on glucose, fructose, sucrose, or gluconate alone, the addition of acetate to these growth media resulted in a severe growth inhibition, which could be reversed by plasmid-based cyaB expression or by supplementation of the medium with cAMP. The effect was concentration- and pH-dependent, suggesting a link to the uncoupling activity of acetate. In agreement, the ΔcyaB mutant had an increased sensitivity to the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The increased uncoupler sensitivity correlated with a lowered membrane potential of acetate-grown ΔcyaB cells compared to wild-type cells. A reduced membrane potential affects major cellular processes, such as ATP synthesis by F1F O -ATP synthase and numerous transport processes. The impaired membrane potential of the ΔcyaB mutant could be due to a decreased expression of the cytochrome bc 1-aa 3 supercomplex, which is the major contributor of proton-motive force in C. glutamicum. Expression of the supercomplex genes was previously reported to be activated by GlxR-cAMP. A suppressor mutant of the ΔcyaB strain with improved growth on acetate was isolated, which carried a single mutation in the genome leading to an Ala131Thr exchange in GlxR. Introduction of this point mutation into the original ΔcyaB mutant restored the growth defect on acetate. This supported the importance of GlxR for the phenotype of the ΔcyaB mutant and, more generally, of the cAMP-GlxR system for the control of energy metabolism in C. glutamicum.

2.
J Biotechnol ; 258: 33-40, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28698098

ABSTRACT

Cyclic adenosine monophosphate (cAMP) plays a regulatory role as second messenger in many species. In the industrial model organism Corynebacterium glutamicum, cAMP acts as effector of the global transcriptional regulator GlxR, a homolog of enterobacterial Crp. The cAMP-GlxR complex activates or represses the expression of about 200 target genes. CyaB, a membrane-bound class III adenylate cyclase, synthesizes cAMP from ATP, but another yet unknown cAMP-forming enzyme is likely present in C. glutamicum. Recently, we identified the cAMP phosphodiesterase CpdA, which catalyzes the conversion of cAMP to AMP. As a tool to search for additional cAMP-forming and degrading enzymes, we constructed a plasmid-based cAMP biosensor by fusing the promoter of cg3195, a gene strongly repressed by GlxR, to the eyfp reporter gene. In control experiments, the biosensor showed the predicted responses to increased levels of cAMP or GlxR. The biosensor was able to distinguish between C. glutamicum wild type and mutants with defects in cAMP biosynthesis or degradation. Most importantly, the sensor allowed successful sorting of mixtures of wild type and mutant strains by fluorescence activated cell sorting (FACS), thus meeting the requirements for high-throughput screening of libraries for single mutant cells with an altered cAMP level.


Subject(s)
Biosensing Techniques/methods , Corynebacterium glutamicum/metabolism , Cyclic AMP Receptor Protein/metabolism , Cyclic AMP/analysis , Single-Cell Analysis/methods , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Cyclic AMP Receptor Protein/chemistry , Cyclic AMP Receptor Protein/genetics , Flow Cytometry , Promoter Regions, Genetic/genetics
3.
Mol Cell Proteomics ; 16(9): 1563-1577, 2017 09.
Article in English | MEDLINE | ID: mdl-28637836

ABSTRACT

Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K-means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular microenvironment to regulate cellular differentiation, and demonstrates, for the first time, the potential of Xellulin as versatile tool promoting an in vivo-like phenotype in primary and propagated cell culture.


Subject(s)
Cell Differentiation/drug effects , Cellulose/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Proteome/metabolism , Transcriptome/genetics , Cell Separation , Cells, Cultured , Cluster Analysis , Collagen/pharmacology , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Biotechnol Bioeng ; 114(3): 560-575, 2017 03.
Article in English | MEDLINE | ID: mdl-27641904

ABSTRACT

Performance losses during scale-up are described since decades, but are still one of the major obstacles for industrial bioprocess development. Consequently, robustness to inhomogeneous cultivation environments is an important quality of industrial production organisms. Especially, Corynebacterium glutamicum was proven to have an outstanding resistance against rapid changes of oxygen and substrate availability as occurring in industrial scale bioreactors. This study focuses on the identification of metabolic key mechanisms for this robustness to get a deeper insight and provide future targets for process orientated strain development. A 1,5-diaminopentane producing C. glutamicum strain was cultivated in a two compartment scale-down device to create short-term environmental changes simulating industrial scale cultivation conditions. Using multi omics based methods, it is shown, that central metabolism is flexibly rearranged under short-term oxygen depletion and carbon source excess to overcome shortage in NAD+ recycling. In order to balance the redox state, key enzymes for the non-oxygen dependent fermentative NAD+ regeneration were significantly up-regulated while parts of non-essential pathways were down-regulated. The transfer of the cells back into the well aerated zones with low substrate concentration triggers an additional upregulation of genes for the re-assimilation of previously formed side products, showing L-lactate forming and utilizing reactions being active at the same time. Especially L-lactate as reversible and flexible external buffer for carbon and redox equivalents puts C. glutamicum in a robust position to deal with inhomogeneity in large scale processes. Biotechnol. Bioeng. 2017;114: 560-575. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Corynebacterium glutamicum/metabolism , Diamines/metabolism , Pentanes/metabolism , Diamines/analysis , Gene Expression Profiling , Glucose/metabolism , Metabolic Networks and Pathways , Oxygen/analysis , Oxygen/metabolism , Pentanes/analysis
5.
Mol Microbiol ; 103(3): 534-552, 2017 02.
Article in English | MEDLINE | ID: mdl-27862445

ABSTRACT

The second messenger cyclic AMP (cAMP) plays an important role in the metabolism of Corynebacterium glutamicum, as the global transcriptional regulator GlxR requires complex formation with cAMP to become active. Whereas a membrane-bound adenylate cyclase, CyaB, was shown to be involved in cAMP synthesis, enzymes catalyzing cAMP degradation have not been described yet. In this study we identified a class II cAMP phosphodiesterase named CpdA (Cg2761), homologs of which are present in many Actinobacteria. The purified enzyme has a Kmapp value of 2.5 ± 0.3 mM for cAMP and a Vmaxapp of 33.6 ± 4.3 µmol min-1 mg-1 . A ΔcpdA mutant showed a twofold increased cAMP level on glucose and reduced growth rates on all carbon sources tested. A transcriptome comparison revealed 247 genes with a more than twofold altered mRNA level in the ΔcpdA mutant, 82 of which are known GlxR targets. Expression of cpdA was positively regulated by GlxR, thereby creating a negative feedback loop allowing to counteract high cAMP levels. The results show that CpdA plays a key role in the control of the cellular cAMP concentration and GlxR activity and is crucial for optimal metabolism and growth of C. glutamicum.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Bacterial Proteins/metabolism , Cyclic AMP/metabolism , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial/genetics , Protein Binding
6.
ASAIO J ; 59(2): 169-77, 2013.
Article in English | MEDLINE | ID: mdl-23438781

ABSTRACT

Microcomputed tomography (µ-CT) is a nondestructive, high-resolution, three-dimensional method of analyzing objects. The aim of this study was to evaluate the feasibility of using µ-CT as a noninvasive method of evaluation for tissue-engineering applications. The polyurethane aortic heart valve scaffold was produced using a spraying technique. Cryopreserved/thawed homograft and biological heart valve were decellularized using a detergent mixture. Human endothelial cells and fibroblasts were derived from saphenous vein segments and were verified by immunocytochemistry. Heart valves were initially seeded with fibroblasts followed by colonization with endothelial cells. Scaffolds were scanned by a µ-CT scanner before and after decellularization as well as after cell seeding. Successful colonization was additionally determined by scanning electron microscopy (SEM) and immunohistochemistry (IHC). Microcomputed tomography accurately visualized the complex geometry of heart valves. Moreover, an increase in the total volume and wall thickness as well as a decrease in total surface was demonstrated after seeding. A confluent cell distribution on the heart valves after seeding was confirmed by SEM and IHC. We conclude that µ-CT is a new promising noninvasive method for qualitative and quantitative analysis of tissue-engineering processes.


Subject(s)
Aortic Valve/cytology , Heart Valve Prosthesis , Tissue Engineering/methods , Animals , Aortic Valve/diagnostic imaging , Cells, Cultured , Humans , Swine , Tomography, X-Ray Computed
7.
Histochem Cell Biol ; 138(6): 847-60, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22820858

ABSTRACT

Epithelial-mesenchymal transition (EMT) is regulated by interaction of carcinoma and stromal cells and crucial for progression of urinary bladder carcinoma (UBC). Therefore, the influence of activated fibroblasts on the expression of E-cadherin repressors as well as EMT and invasion in UBC was investigated. A correlative analysis of the immunohistochemical expression of fibroblast (ASMA, S100A4, FAP, SDF1, PDGFRß) and EMT (Snail, Slug, Zeb1, E-cadherin) markers was performed on 49 UBC cases of different stages. The impact of distinguishable growth factor stimulated fibroblasts on invasion, EMT, and E-cadherin repressor expression was investigated in an invasion model. In situ, invasiveness was significantly correlated to the loss of membranous E-cadherin (E-cad_m) and increased Snail, Slug, Zeb1 in tumour cells, as well as to increased ASMA, S100A4, and PDGFRß in stromal cells. A significant correlation to nodal metastasis could be evidenced for the loss of E-Cad_m, and for an increase in S100A4 and PDGFRß. Comparison of stromal and EMT markers revealed significant correlations of ASMA to Snail and Slug; of S100A4 to the loss of E-cad_m and Zeb1; and of PDGFRß to the loss of E-Cad_m, Slug and Zeb1. In vitro, TGFß1 induced myofibroblasts were the strongest attractants, while aFGF or TGFß1/aFGF stimulated fibroblasts were the most potent EMT inductors. As shown here for the first time, distinct sub-populations of fibroblasts are to various extents associated with EMT and tumour progression in UBC. These relevant findings might be the basis for the identification of new diagnostic markers and therapeutic targets selectively affecting tumour supporting CAF effects.


Subject(s)
Cadherins/antagonists & inhibitors , Fibroblasts/metabolism , Homeodomain Proteins/analysis , Stromal Cells/metabolism , Transcription Factors/analysis , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Cells, Cultured , Fibroblasts/chemistry , Fibroblasts/cytology , Homeodomain Proteins/biosynthesis , Humans , Immunohistochemistry , Neoplasm Invasiveness , Snail Family Transcription Factors , Stromal Cells/chemistry , Stromal Cells/cytology , Transcription Factors/biosynthesis , Zinc Finger E-box-Binding Homeobox 1
8.
BMC Plant Biol ; 2: 6, 2002 Jul 18.
Article in English | MEDLINE | ID: mdl-12123528

ABSTRACT

BACKGROUND: The moss Physcomitrella patens is an attractive model system for plant biology and functional genome analysis. It shares many biological features with higher plants but has the unique advantage of an efficient homologous recombination system for its nuclear DNA. This allows precise genetic manipulations and targeted knockouts to study gene function, an approach that due to the very low frequency of targeted recombination events is not routinely possible in any higher plant. RESULTS: As an important prerequisite for a large-scale gene/function correlation study in this plant, we are establishing a collection of Physcomitrella patens transformants with insertion mutations in most expressed genes. A low-redundancy moss cDNA library was mutagenised in E. coli using a derivative of the transposon Tn1000. The resulting gene-disruption library was then used to transform Physcomitrella. Homologous recombination of the mutagenised cDNA with genomic coding sequences is expected to target insertion events preferentially to expressed genes. An immediate phenotypic analysis of transformants is made possible by the predominance of the haploid gametophytic state in the life cycle of the moss. Among the first 16,203 transformants analysed so far, we observed 2636 plants (= 16.2%) that differed from the wild-type in a variety of developmental, morphological and physiological characteristics. CONCLUSIONS: The high proportion of phenotypic deviations and the wide range of abnormalities observed among the transformants suggests that mutagenesis by gene-disruption library transformation is a useful strategy to establish a highly diverse population of Physcomitrella patens mutants for functional genome analysis.


Subject(s)
Bryopsida/genetics , Gene Library , Bryopsida/growth & development , DNA Transposable Elements , DNA, Complementary/genetics , Genome, Plant , Mutagenesis , Mutagenesis, Insertional , Mutation , Phenotype , Plants, Genetically Modified , Recombination, Genetic , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...