Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Ethics ; 50(1): 57-61, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-36941048

ABSTRACT

In July 2020, the H3Africa Ethics and Community Engagement (E&CE) Working Group organised a webinar with ethics committee members and biomedical researchers from various African institutions throughout the Continent to discuss the issue of whether and how biological samples for scientific research may be accessed by commercial entities when broad consents obtained for the samples are silent. 128 people including Research Ethics Committee members (10), H3Africa researchers (46) including members of the E&CE working group, biomedical researchers not associated with H3Africa (27), representatives from the National Institutes of Health (16) and 10 other participants attended the webinar and shared their views. Several major themes emerged during the webinar, with the topics of broad versus explicit informed consent, defining commercial use, legacy samples and benefit sharing prevailing in the discussion. This report describes the consensus concerns and recommendations raised during the meeting and will be informative for future research on ethical considerations for genomic research in the African research context.


Subject(s)
Genomics , Informed Consent , Humans , Ethics, Research , Ethics Committees, Research
2.
Nature ; 604(7906): 437-446, 2022 04.
Article in English | MEDLINE | ID: mdl-35444317

ABSTRACT

The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation. A high-quality reference with global representation of common variants, including single-nucleotide variants, structural variants and functional elements, is needed. The Human Pangenome Reference Consortium aims to create a more sophisticated and complete human reference genome with a graph-based, telomere-to-telomere representation of global genomic diversity. Here we leverage innovations in technology, study design and global partnerships with the goal of constructing the highest-possible quality human pangenome reference. Our goal is to improve data representation and streamline analyses to enable routine assembly of complete diploid genomes. With attention to ethical frameworks, the human pangenome reference will contain a more accurate and diverse representation of global genomic variation, improve gene-disease association studies across populations, expand the scope of genomics research to the most repetitive and polymorphic regions of the genome, and serve as the ultimate genetic resource for future biomedical research and precision medicine.


Subject(s)
Genome, Human , Genomics , Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
3.
Neurobiol Dis ; 152: 105291, 2021 05.
Article in English | MEDLINE | ID: mdl-33556542

ABSTRACT

Abnormal aggregation of the α-synuclein protein is a key molecular feature of Parkinson's disease and other neurodegenerative diseases. The precise mechanisms that trigger α-synuclein aggregation are unclear, and it is not known what role aggregation plays in disease pathogenesis. Here we use an in vivo zebrafish model to express several different forms of human α-synuclein and measure its aggregation in presynaptic terminals. We show that human α-synuclein tagged with GFP can be expressed in zebrafish neurons, localizing normally to presynaptic terminals and undergoing phosphorylation at serine-129, as in mammalian neurons. The visual advantages of the zebrafish system allow for dynamic in vivo imaging to study α-synuclein, including the use of fluorescence recovery after photobleaching (FRAP) techniques to probe protein mobility. These experiments reveal three distinct terminal pools of α-synuclein with varying mobility, likely representing different subpopulations of aggregated and non-aggregated protein. Human α-synuclein is phosphorylated by an endogenous zebrafish Polo-like kinase activity, and there is a heterogeneous population of neurons containing either very little or extensive phosphorylation throughout the axonal arbor. Both pharmacological and genetic manipulations of serine-129 show that phosphorylation of α-synuclein at this site does not significantly affect its mobility. This suggests that serine-129 phosphorylation alone does not promote α-synuclein aggregation. Together our results show that human α-synuclein can be expressed and measured quantitatively in zebrafish, and that disease-relevant post-translational modifications occur within neurons. The zebrafish model provides a powerful in vivo system for measuring and manipulating α-synuclein function and aggregation, and for developing new treatments for neurodegenerative disease.


Subject(s)
Disease Models, Animal , Parkinson Disease , Presynaptic Terminals/pathology , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Animals, Genetically Modified , Humans , Phosphorylation , Serine/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...