Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(3): 2303-10, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25630562

ABSTRACT

The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Optics and Photonics/methods , Silver/chemistry
2.
ACS Nano ; 8(7): 6883-92, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24897004

ABSTRACT

Fluorescent, DNA-stabilized silver clusters are receiving much attention for sequence-selected colors and high quantum yields. However, limited knowledge of cluster structure is constraining further development of these "AgN-DNA" nanomaterials. We report the structurally sensitive, chiroptical activity of four pure AgN-DNA with wide ranging colors. Ubiquitous features in circular dichroism (CD) spectra include a positive dichroic peak overlying the lowest energy absorbance peak and highly anisotropic, negative dichroic peaks at energies well below DNA transitions. Quantum chemical calculations for bare chains of silver atoms with nonplanar curvature also exhibit these striking features, indicating electron flow along a chiral, filamentary metallic path as the origin for low-energy AgN-DNA transitions. Relative to the bare DNA, marked UV changes in CD spectra of AgN-DNA and silver cation-DNA solutions indicate that ionic silver content constrains nucleobase conformation. Changes in solvent composition alone can reorganize cluster structure, reconfiguring chiroptical properties and fluorescence.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Silver/chemistry , Transistors, Electronic , Color , Models, Molecular , Molecular Conformation , Optical Phenomena , Quantum Theory , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...