Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30918073

ABSTRACT

In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Subject(s)
B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , Vaccinia virus/metabolism , Animals , Antigens, CD/metabolism , B7-1 Antigen/genetics , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , Cell Adhesion Molecules , Cell Line , Chick Embryo , Humans , Immunoconjugates , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Membrane Glycoproteins/metabolism , Mice , NF-kappa B/metabolism , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia virus/genetics , Viral Proteins/metabolism
2.
PLoS One ; 13(5): e0196815, 2018.
Article in English | MEDLINE | ID: mdl-29718990

ABSTRACT

Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Viral Vaccines/therapeutic use , Drug Therapy, Combination , Enzyme-Linked Immunosorbent Assay , Humans , Treatment Outcome , Tuberculosis, Multidrug-Resistant/drug therapy , Vaccines, DNA , Viral Vaccines/genetics
3.
Cancer Gene Ther ; 9(7): 606-12, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12082461

ABSTRACT

We isolated cancer cell-specific phages by subtracting and selecting complex peptide display phage libraries on cultured human cancer cells. The best candidate was selected by performing three rounds of subtraction before each of five selections on the human colorectal WiDr cell line. The phage showed more than 1000-fold higher binding efficiency for WiDr cells when compared to five other human cancer cell lines, including two of colorectal origin, and when compared to wild-type M13 phage. Fifty-fold higher binding efficiency was also seen for a human breast cancer cell line. We show that the WiDr cell binding of the selected phage was efficiently competed by the synthetic peptide HEWSYLAPYPWF, predicted from the phage sequence. This confirms that the specificity of the peptide is independent of the display by the phage coat proteins. The identified peptide may target biomarkers linked to colorectal cancer, and thus be useful for designing gene transfer vectors as well as diagnostic and prognostic tools for this disease.


Subject(s)
Genetic Therapy/methods , Oligopeptides/pharmacology , Peptides/pharmacology , Humans , Immunoglobulin G/metabolism , Immunohistochemistry , Peptide Library , Protein Binding , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...