Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215703

ABSTRACT

The level of energy consumption in renovation activities of buildings has huge advantages over the demolition of old buildings and the construction of new structures. Such renovation activities are usually associated with the simultaneous strengthening of their elements, such as externally bonded carbon fibre reinforced polymer (CFRP) lamellas or sheets on vertical and horizontal surfaces as structural reinforcements. This means the process of refurbishing a building, as well as the raw materials themselves have a significant impact on CO2 emissions and energy consumption. This research paper demonstrates possibilities of replacing state of the art, highly energy-intensive CFRP lamellas with basalt fibre reinforced plastics as energy-efficient structural reinforcements for building constructions. The mechanical and thermal properties of basalt fibre reinforced polymer (BFRP) composites with variable matrix formulations are investigated. The article considers macro- and microstructures of innovative BFRP. The investigations focus on fibre-matrix interactions with different sizing formulations and their effect on the tensile strength, strain as well as modulus of elasticity.

2.
Materials (Basel) ; 14(13)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34279308

ABSTRACT

High performance fiber-reinforced concrete (HPFRC) has been frequently investigated in recent years. Plenty of studies have focused on different materials and types of fibers in combination with the concrete matrix. Experimental tests show that fiber dosage improves the energy absorption capacity of concrete and enhances the robustness of concrete elements. Fiber reinforced concrete has also been illustrated to be a material for developing infrastructure sustainability in RC elements like façade plates, columns, beams, or walls. Due to increasing costs of the produced fiber reinforced concrete and to ensure the serviceability limit state of construction elements, there is a demand to analyze the necessary fiber dosage in the concrete composition. It is expected that the surface and length of used fiber in combination with their dosage influence the structure of fresh and hardened concrete. This work presents an investigation of the mechanical parameters of HPFRC with different polymer fiber dosage. Tests were carried out on a mixture with polypropylene and polyvinyl alcohol fiber with dosages of 15, 25, and 35 kg/m3 as well as with control concrete without fiber. Differences were observed in the compressive strength and in the modulus of elasticity as well as in the flexural and splitting tensile strength. The flexural tensile strength test was conducted on two different element shapes: square panel and beam samples. These mechanical properties could lead to recommendations for designers of façade elements made of HPFRC.

SELECTION OF CITATIONS
SEARCH DETAIL
...