Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6506, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081092

ABSTRACT

The design of minimum CRISPR RNA (crRNA) sets for detection of diverse RNA targets using sequence degeneracy has not been systematically addressed. We tested candidate degenerate Cas13a crRNA sets designed for detection of diverse RNA targets (Lassa virus). A decision tree machine learning (ML) algorithm (RuleFit) was applied to define the top attributes that determine the specificity of degenerate crRNAs to elicit collateral nuclease activity. Although the total number of mismatches (0-4) is important, the specificity depends as well on the spacing of mismatches, and their proximity to the 5' end of the spacer. We developed a predictive algorithm for design of candidate degenerate crRNA sets, allowing improved discrimination between "included" and "excluded" groups of related target sequences. A single degenerate crRNA set adhering to these rules detected representatives of all Lassa lineages. Our general ML approach may be applied to the design of degenerate crRNA sets for any CRISPR/Cas system.


Subject(s)
Lassa virus , RNA , RNA/metabolism , Lassa virus/genetics , RNA Processing, Post-Transcriptional , CRISPR-Cas Systems/genetics
2.
Sci Rep ; 12(1): 13953, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977955

ABSTRACT

All CRISPR/CAS systems utilize CRISPR guide RNAs (crRNAs), the design of which depend on the type of CAS protein, genetic target and the environment/matrix. While machine learning approaches have recently been developed to optimize some crRNA designs, candidate crRNAs must still be screened for efficacy under relevant conditions. Here, we demonstrate a high-throughput method to screen hundreds of candidate crRNAs for activation of Cas13a collateral RNA cleavage. Entire regions of a model gene transcript (Y. pestis lcrV gene) were tiled to produce overlapping crRNA sets. We tested for possible effects that included crRNA/target sequence, size and secondary structures, and the commercial source of DNA oligomers used to generate crRNAs. Detection of a 981 nt target RNA was initially successful with 271 out of 296 tested guide RNAs, and that was improved to 287 out of 296 (97%) after protocol optimizations. For this specific example, we determined that crRNA efficacy did not strongly depend on the target region or crRNA physical properties, but was dependent on the source of DNA oligomers used for RNA preparation. Our high-throughput methods for screening crRNAs has general applicability to the optimization of Cas12 and Cas13 guide RNA designs.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems/genetics , DNA , RNA/genetics , RNA Cleavage , RNA, Guide, Kinetoplastida/metabolism
3.
Mycologia ; 111(1): 13-25, 2019.
Article in English | MEDLINE | ID: mdl-30699058

ABSTRACT

The maintenance of cell shape requires finely tuned and robust vesicle trafficking in order to provide sufficient plasma membrane materials. The hyphal cells of filamentous fungi are an extreme example of cell shape maintenance due to their ability to grow rapidly and respond to the environment while keeping a relatively consistent shape. We have previously shown that two phospholipid flippases, which regulate the asymmetry of specific phospholipids within the plasma membrane, are important for hyphal growth in Aspergillus nidulans. Here, we examine the rest of the phospholipid flippases encoded by A. nidulans by obtaining single and double deletions of all four family members, dnfA, dnfB, dnfC, and dnfD. We find that deleting dnfC does not impart a noticeable phenotype, by itself or with other deletions, but that dnfD, the homolog of the essential yeast gene neo1, is important for conidiation. dnfD deletion mutants form misshapen conidiophore vesicles that are defective in metulae formation. We localize DnfD to late Golgi equivalents, where it appears just before dissociation of this organelle. We propose that DnfD functions in a trafficking process that is specifically required for the morphological changes that take place during conidiation.


Subject(s)
Aspergillus nidulans/genetics , Fungal Proteins/physiology , Golgi Apparatus/enzymology , Phospholipids/physiology , Reproduction, Asexual , Aspergillus nidulans/enzymology , Fungal Proteins/genetics , Gene Deletion , Hyphae/growth & development , Mutation , Phenotype , Phylogeny , Spores, Fungal
4.
Mol Microbiol ; 103(2): 299-318, 2017 01.
Article in English | MEDLINE | ID: mdl-27741567

ABSTRACT

Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.


Subject(s)
Aspergillus nidulans/metabolism , Clathrin Heavy Chains/metabolism , Clathrin/metabolism , Aspergillus nidulans/genetics , Clathrin/genetics , Clathrin Heavy Chains/genetics , Endocytosis/physiology , Exocytosis/physiology , Fungal Proteins/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/physiology , Green Fluorescent Proteins/metabolism , Hyphae/metabolism , Microtubules/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...