Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(6): 994-1011.e18, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36806354

ABSTRACT

All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.


Subject(s)
Peptides , Protein Biosynthesis , Humans , Open Reading Frames , Peptides/genetics , Proteomics , Micropeptides
2.
Sci Rep ; 13(1): 2216, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750595

ABSTRACT

The beta­site amyloid precursor protein (APP) cleaving enzyme (BACE1) was discovered due to its "amyloidogenic" activity which contributes to the production of amyloid-beta (Aß) peptides. However, BACE1 also possesses an "amyloidolytic" activity, whereby it degrades longer Aß peptides into a non­toxic Aß34 intermediate. Here, we examine conditions that shift the equilibrium between BACE1 amyloidogenic and amyloidolytic activities by altering BACE1/APP ratios. In Alzheimer disease brain tissue, we found an association between elevated levels of BACE1 and Aß34. In mice, the deletion of one BACE1 gene copy reduced BACE1 amyloidolytic activity by ~ 50%. In cells, a stepwise increase of BACE1 but not APP expression promoted amyloidolytic cleavage resulting in dose-dependently increased Aß34 levels. At the cellular level, a mislocalization of surplus BACE1 caused a reduction in Aß34 levels. To align the role of γ-secretase in this pathway, we silenced Presenilin (PS) expression and identified PS2-γ-secretase as the main γ-secretase that generates Aß40 and Aß42 peptides serving as substrates for BACE1's amyloidolytic cleavage to generate Aß34.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Mice , Animals , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Mice, Transgenic , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Homeostasis
3.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31155234

ABSTRACT

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Subject(s)
Myocardium/metabolism , Protein Biosynthesis , Adolescent , Adult , Aged , Animals , Codon/genetics , Female , Gene Expression Regulation , HEK293 Cells , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Middle Aged , Open Reading Frames/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Ribosomes/genetics , Ribosomes/metabolism , Young Adult
4.
Structure ; 24(5): 762-773, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27150041

ABSTRACT

The proteins Smu1 and RED have been jointly implicated in the regulation of alternative splicing, mitosis, and influenza virus infection, but how they interact and whether their diverse cellular functions are coupled is unknown. We identified an N-terminal region of Smu1 and a central region of RED that stably interact. Structural analyses revealed that the RED-binding region of Smu1 contains an N-terminal LisH motif linked to a core domain and a C-terminal α helix that folds back onto the LisH motif. Smu1 dimerizes via its LisH motif and C-terminal α helix and undergoes global conformational changes upon RED binding. In the ensuing hetero-tetrameric Smu1-RED complex, two molecules of RED use short α helices to bind hydrophobic grooves of two Smu1 core domains. Our results show how Smu1 and RED form a functional module that exhibits intriguing similarities to transcriptional co-repressor complexes, arranging multiple additional protein-protein interaction sites for contacting splicing and/or chromatin factors.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Nuclear Proteins/chemistry , Animals , Binding Sites , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Molecular Docking Simulation , Nuclear Proteins/metabolism , Protein Binding , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...