Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Phys Chem B ; 128(28): 6866-6875, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38976651

ABSTRACT

Ammonium nitrate in aqueous solution was investigated with synchrotron radiation based photoelectron spectroscopy using two types of liquid jet nozzles. Electron emission from a cylindrical microjet of aqueous ammonium nitrate solution was measured at two different angles relative to the horizontal polarization of the incident synchrotron radiation, 90° and 54.7° (the "magic angle"), for a range of photon energies (470-530 eV). We obtained ß parameter values as a function of photon energy, based on a normalization procedure relying on simulations of background intensity with the SESSA (Simulation of Electron Spectra for Surface Analysis) package. The ß values are similar to literature data for O 1s ionization of liquid water, and the ß value of N 1s from NH4+ is higher than that for NO3-, by ≈0.1. The measurements also show that the photoelectron signal from NO3- exhibits a photon energy dependent cross section variation not observed in NH4+. Additional measurements using a flat jet nozzle found that the ammonium and nitrate peak area ratio was unaffected by changes in the takeoff angle, indicating a similar distribution of both ammonium and nitrate in the surface region.

2.
Nat Commun ; 15(1): 3827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714735

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Subject(s)
Catalytic Domain , Coronavirus 3C Proteases , Cysteine , Disulfides , Oxidation-Reduction , SARS-CoV-2 , Disulfides/chemistry , Disulfides/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Cysteine/chemistry , Cysteine/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Multimerization , COVID-19/virology
3.
J Appl Crystallogr ; 57(Pt 2): 266-275, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38596734

ABSTRACT

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.

4.
Struct Dyn ; 11(2): 024310, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38638699

ABSTRACT

X-ray Free Electron Lasers (XFELs) allow the collection of high-quality serial femtosecond crystallography data. The next generation of megahertz superconducting FELs promises to drastically reduce data collection times, enabling the capture of more structures with higher signal-to-noise ratios and facilitating more complex experiments. Currently, gas dynamic virtual nozzles (GDVNs) stand as the sole delivery method capable of best utilizing the repetition rate of megahertz sources for crystallography. However, their substantial sample consumption renders their use impractical for many protein targets in serial crystallography experiments. Here, we present a novel application of a droplet-on-demand injection method, which allowed operation at 47 kHz at the European XFEL (EuXFEL) by tailoring a multi-droplet injection scheme for each macro-pulse. We demonstrate a collection rate of 150 000 indexed patterns per hour. We show that the performance and effective data collection rate are comparable to GDVN, with a sample consumption reduction of two orders of magnitude. We present lysozyme crystallographic data using the Large Pixel Detector at the femtosecond x-ray experiment endstation. Significant improvement of the crystallographic statistics was made by correcting for a systematic drift of the photon energy in the EuXFEL macro-pulse train, which was characterized from indexing the individual frames in the pulse train. This is the highest resolution protein structure collected and reported at the EuXFEL at 1.38 Å resolution.

5.
J Synchrotron Radiat ; 31(Pt 2): 222-232, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38306300

ABSTRACT

This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.

6.
Sci Rep ; 14(1): 4401, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388562

ABSTRACT

Imaging the structure and observing the dynamics of isolated proteins using single-particle X-ray diffractive imaging (SPI) is one of the potential applications of X-ray free-electron lasers (XFELs). Currently, SPI experiments on isolated proteins are limited by three factors: low signal strength, limited data and high background from gas scattering. The last two factors are largely due to the shortcomings of the aerosol sample delivery methods in use. Here we present our modified electrospray ionization (ESI) source, which we dubbed helium-ESI (He-ESI). With it, we increased particle delivery into the interaction region by a factor of 10, for 26 nm-sized biological particles, and decreased the gas load in the interaction chamber corresponding to an 80% reduction in gas scattering when compared to the original ESI. These improvements have the potential to significantly increase the quality and quantity of SPI diffraction patterns in future experiments using He-ESI, resulting in higher-resolution structures.


Subject(s)
Helium , Proteins , X-Rays , X-Ray Diffraction , Lasers
7.
J Mol Biol ; 436(5): 168439, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38185322

ABSTRACT

The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.


Subject(s)
Adenylyl Cyclases , Bacterial Proteins , Oscillatoria , Photoreceptors, Microbial , Adenosine Triphosphate/chemistry , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/radiation effects , Bacterial Proteins/chemistry , Bacterial Proteins/radiation effects , Flavin-Adenine Dinucleotide/chemistry , Signal Transduction , Spectroscopy, Fourier Transform Infrared , Oscillatoria/enzymology , Catalytic Domain , Tryptophan/chemistry , Methionine/chemistry , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/radiation effects , Enzyme Activation
8.
Commun Biol ; 6(1): 1057, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853181

ABSTRACT

Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.


Subject(s)
Electrons , Proteins , Scattering, Small Angle , X-Rays , X-Ray Diffraction , Proteins/chemistry , Lasers
9.
J Appl Crystallogr ; 56(Pt 4): 1038-1045, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555221

ABSTRACT

Time-resolved crystallography enables the visualization of protein molecular motion during a reaction. Although light is often used to initiate reactions in time-resolved crystallography, only a small number of proteins can be activated by light. However, many biological reactions can be triggered by the interaction between proteins and ligands. The sample delivery method presented here uses a mix-and-extrude approach based on 3D-printed microchannels in conjunction with a micronozzle. The diffusive mixing enables the study of the dynamics of samples in viscous media. The device design allows mixing of the ligands and protein crystals in 2 to 20 s. The device characterization using a model system (fluorescence quenching of iq-mEmerald proteins by copper ions) demonstrated that ligand and protein crystals, each within lipidic cubic phase, can be mixed efficiently. The potential of this approach for time-resolved membrane protein crystallography to support the development of new drugs is discussed.

10.
SAGE Open Med Case Rep ; 11: 2050313X231172338, 2023.
Article in English | MEDLINE | ID: mdl-37187493

ABSTRACT

Cytotoxic lesions of the corpus callosum are lesions secondary to different medical conditions. Radiologically, lesions are identified on magnetic resonance imaging as a hyperintense signal on diffusion-weighted imaging and decreased apparent diffusion coefficient values of the splenium of corpus callosum. Signal changes are reversible in almost totality of the cases. Previous cases of cytotoxic lesions of the corpus callosums have been associated with several metabolic disturbances, but ketotic hyperglycemia has never been reported. We here discussed the case of 28-year-old patient with complex visual hallucinations presenting with cytotoxic lesions of the corpus callosums and type I diabetes. Treatment of hyperglycemia was followed by full clinical recovery and complete regression of the radiological abnormalities at 3-month follow-up. Elevated levels of circulating pro-inflammatory mediators associated with ketotic hyperglycemia in type I diabetes support an implication of cytokines in the pathophysiology of the cytotoxic lesions of the corpus callosums.

11.
J Appl Crystallogr ; 55(Pt 4): 944-952, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974719

ABSTRACT

Liquid sample delivery systems are used extensively for serial femtosecond crystallography at X-ray free-electron lasers (XFELs). However, misalignment of the liquid jet and the XFEL beam leads to the X-rays either partially or completely missing the sample, resulting in sample wastage and a loss of experiment time. Implemented here is an algorithm to analyse optical images using machine vision to determine whether there is overlap of the X-ray beam and liquid jet. The long-term goal is to use the output from this algorithm to implement an automated feedback mechanism to maintain constant alignment of the X-ray beam and liquid jet. The key elements of this jet alignment algorithm are discussed and its performance is characterized by comparing the results with a manual analysis of the optical image data. The success rate of the algorithm for correctly identifying hits is quantified via a similarity metric, the Dice coefficient. In total four different nozzle designs were used in this study, yielding an overall Dice coefficient of 0.98.

12.
Nat Commun ; 13(1): 4708, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953469

ABSTRACT

The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX.


Subject(s)
Electrons , Lasers , Crystallography, X-Ray , Radiography , X-Rays
13.
Nat Commun ; 13(1): 4297, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879366

ABSTRACT

Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Alveolar/drug therapy , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Embryonal/genetics
14.
Sci Rep ; 12(1): 12136, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840749

ABSTRACT

In this work, the application of a time resolved multi-contrast beam tracking technique to the investigation of the melting and solidification process in metals is presented. The use of such a technique allows retrieval of three contrast channels, transmission, refraction and dark-field, with millisecond time resolution. We investigated different melting conditions to characterize, at a proof-of-concept level, the features visible in each of the contrast channels. We found that the phase contrast channel provides a superior visibility of the density variations, allowing the liquid metal pool to be clearly distinguished. Refraction and dark-field were found to highlight surface roughness formed during solidification. This work demonstrates that the availability of the additional contrast channels provided by multi-contrast X-ray imaging delivers additional information, also when imaging high atomic number specimens with a significant absorption.

16.
J Synchrotron Radiat ; 29(Pt 2): 331-346, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254295

ABSTRACT

The Sample Environment and Characterization (SEC) group of the European X-ray Free-Electron Laser (EuXFEL) develops sample delivery systems for the various scientific instruments, including systems for the injection of liquid samples that enable serial femtosecond X-ray crystallography (SFX) and single-particle imaging (SPI) experiments, among others. For rapid prototyping of various device types and materials, sub-micrometre precision 3D printers are used to address the specific experimental conditions of SFX and SPI by providing a large number of devices with reliable performance. This work presents the current pool of 3D printed liquid sample delivery devices, based on the two-photon polymerization (2PP) technique. These devices encompass gas dynamic virtual nozzles (GDVNs), mixing-GDVNs, high-viscosity extruders (HVEs) and electrospray conical capillary tips (CCTs) with highly reproducible geometric features that are suitable for time-resolved SFX and SPI experiments at XFEL facilities. Liquid sample injection setups and infrastructure on the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument are described, this being the instrument which is designated for biological structure determination at the EuXFEL.


Subject(s)
Lasers , Printing, Three-Dimensional , Crystallography, X-Ray , Viscosity , X-Rays
17.
Phys Rev Lett ; 127(21): 215503, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860108

ABSTRACT

We present a dynamic implementation of the beam-tracking x-ray imaging method providing absorption, phase, and ultrasmall angle scattering signals with microscopic resolution and high frame rate. We demonstrate the method's ability to capture dynamic processes with 22-ms time resolution by investigating the melting of metals in laser additive manufacturing, which has so far been limited to single-modality synchrotron radiography. The simultaneous availability of three contrast channels enables earlier segmentation of droplets, tracking of powder dynamic, and estimation of unfused powder amounts, demonstrating that the method can provide additional information on melting processes.

18.
J Appl Crystallogr ; 54(Pt 1): 7-21, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33833637

ABSTRACT

The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.

19.
Children (Basel) ; 8(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572828

ABSTRACT

Extravasation can present serious accidental complication of intravenous drug application. While monoclonal antibodies do not show the necrotic potential of cytotoxic chemotherapy drugs, considerable inflammatory toxicity can occur, necessitating standardized operating procedures for the management of their extravasation. Here, we report the clinical course and management of dinutuximab beta extravasation in a 3-year-old child. Dinutuximab beta is a chimeric monoclonal antibody targeting the GD2 disialoganglioside on the surface of neuroblastoma cells that has in recent years gained significant importance in the treatment of high-risk neuroblastoma, now contributing to both first- and second-line therapy protocols. The dinutuximab beta extravasation reported here occurred when the patient received the antibody cycle as a continuous infusion over a 10-day period after haploidentical stem cell transplantation for relapsed high-risk neuroblastoma. The extravasated dinutuximab beta caused local pain, swelling, and hyperemia accompanied by fever and an overall deterioration in the general condition. Laboratory diagnostics demonstrated an increase in C-reactive protein level and total white blood cell count. Clinical complication management consisted of intravenous fluid therapy, local dabbing with dimethyl sulfoxide (DMSO), analgesia with dipyrone, as well as application of intravenous antibiotics to prevent bacterial superinfection in the severely immunocompromised host. The patient considerably improved after six days with this treatment regimen and fully recovered by day 20.

SELECTION OF CITATIONS
SEARCH DETAIL
...