Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 9(9): 1286-1291, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-35638630

ABSTRACT

The molecular composition of polymer blend surfaces defines properties such as adhesion, wetting, gloss, and biocompatibility. The surface composition often differs from the bulk because of thermodynamic effects or modification. Mixtures of colloids and linear polymers in a common solvent are often used to deposit films for use in encapsulants, inks, coatings, and adhesives. However, means to control the nonequilibrium surface composition are lacking for these systems. Here we show how the surface composition and hydrophilicity of a film deposited from a bimodal mixture of linear polymers and colloids in water can be adjusted simply by varying the evaporation rate. Ion beam analysis was used to quantify the extent of stratification of the linear polymers near the surface, and the results are in agreement with a recent diffusiophoretic model. Because our approach to stratification relies solely on diffusiophoresis, it is widely applicable to any system deposited from colloids and nonadsorbing polymers in solution as a means to tailor surface properties.

2.
ACS Appl Mater Interfaces ; 10(13): 11221-11232, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29518318

ABSTRACT

The presence of low-molar-mass surfactants in latex films results in detrimental effects on their water permeability, gloss, and adhesion. For applications such as coatings, there is a need to develop formulations that do not contain surfactants and have better water barrier properties. Having previously reported the synthesis of surfactant-free latex particles in water using low amounts (<2 wt %) of chains synthesized by controlled radical polymerization (Lesage de la Haye et al. Macromolecules 2017, 50, 9315-9328), here we study the water barrier properties of films made from these particles and their application in anticorrosion coatings. When films cast from aqueous dispersions of acrylate copolymer particles stabilized with poly(sodium 4-styrenesulfonate) (PSSNa) were immersed in water for 3 days, they sorbed only 4 wt % water. This uptake is only slightly higher than the value predicted for the pure copolymer, indicating that the negative effects of any particle boundaries and hydrophilic-stabilizing molecules are minimal. This sorption of liquid water is 5 times lower than what is found in films cast from particles stabilized with the same proportion of poly(methacrylic acid) (PMAA), which is more hydrophilic than PSSNa. In water vapor with 90% relative humidity, the PSSNa-based film had an equilibrium sorption of only 4 wt %. A small increase in the PMAA content has a strong and negative impact on the barrier properties. Nuclear magnetic resonance relaxometry on polymer films after immersion in water shows that water clusters have the smallest size in the films containing PSSNa. Furthermore, these films retain their optical clarity during immersion in liquid water for up to 90 min, whereas all other compositions quickly develop opacity ("water whitening") as a result of light scattering from sorbed water. This implies a remarkably complete coalescence and a very small density of defects, which yields properties matching those of some solvent-borne films. The latex stabilized with PSSNa is implemented as the binder in a paint formulation for application as an anticorrosive barrier coating on steel substrates and evaluated in accelerated weathering and corrosion tests. Our results demonstrate the potential of self-stabilized latex particles for the development of different applications, such as waterborne protective coatings and pressure-sensitive adhesives.

3.
Langmuir ; 30(31): 9384-9, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25033245

ABSTRACT

The lateral drying front observed during film formation from latex dispersions with a Tg of the polymer around room temperature is composed of three three distinct lines. The lines are characterized by a decrease in turbidity, a renewed sharp increase in turbidity, and a more gradual decrease in turbidity at the end of what can be called a "halo". Microcracks with herringbone morphology develop at the first line, where the turbidity decreases. If macrocracks are present, these nucleate close to the end of the halo. At the line, where the turbidity sharply increases, one also observes an increase in stress birefringence. The substructure of the drying front is characteristically different from the structures described previously for films drying from hard particles. In particular, the renewed increase in turbidity cannot be explained as pore-opening, but rather is the consequence of a coarsening of the pore network after the particles jump into contact. A capillary instability sets in, by which the small pores collapse under the polymer/water interfacial energy, while the larger pores expand correspondingly. The instability (related to the Rayleigh instability of liquid jets) makes the films appear turbid. Also, the induced mechanical heterogeneity prevents straight macrocracks from penetrating into the halo because crack deflection and crack branching would result, which is energetically unfavorable.

SELECTION OF CITATIONS
SEARCH DETAIL
...