Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36161446

ABSTRACT

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Subject(s)
DEAD-box RNA Helicases , HIV-1 , Positive-Strand RNA Viruses , Virus Replication , Humans , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , HIV-1/physiology , Positive-Strand RNA Viruses/physiology , SARS-CoV-2/physiology
2.
PLoS One ; 16(11): e0254971, 2021.
Article in English | MEDLINE | ID: mdl-34793449

ABSTRACT

Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation. Studies of the methylation state of DNA preserved in oak heartwood thus could identify epigenetic tree ring features informing on past environmental conditions. In this study, we aimed to establish protocols for the extraction of DNA, the high-throughput sequencing of whole-genome DNA libraries (WGS) and the profiling of DNA methylation by whole-genome bisulfite sequencing (WGBS) for oak (Quercus robur) heartwood drill cores taken from the trunks of living standing trees spanning the AD 1776-2014 time period. Heartwood contains little DNA, and large amounts of phenolic compounds known to hinder the preparation of high-throughput sequencing libraries. Whole-genome and DNA methylome library preparation and sequencing consistently failed for oak heartwood samples more than 100 and 50 years of age, respectively. DNA fragmentation increased with sample age and was exacerbated by the additional bisulfite treatment step during methylome library preparation. Relative coverage of the non-repetitive portion of the oak genome was sparse. These results suggest that quantitative methylome studies of oak hardwood will likely be limited to relatively recent samples and will require a high sequencing depth to achieve sufficient genome coverage.


Subject(s)
DNA Methylation , DNA, Plant , Quercus/genetics , CpG Islands , Epigenome , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing
3.
Front Cell Dev Biol ; 9: 676543, 2021.
Article in English | MEDLINE | ID: mdl-34239874

ABSTRACT

Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human.

4.
Genome Res ; 31(8): 1381-1394, 2021 08.
Article in English | MEDLINE | ID: mdl-34244229

ABSTRACT

Hydroxycarbamide (HC, hydroxyurea) is a cytoreductive drug inducing cell cycle blockade. However, emerging evidence suggests that HC plays a role in the modulation of transcription through the activity of transcription factors and DNA methylation. Examining the global mechanism of action of HC in the context of myeloproliferative neoplasms (MPNs), for which HC is the first-line treatment, will provide a better understanding of its molecular effects. To explore the effects of HC genome-wide, transcriptomic analyses were performed on two clinically relevant cell types at different stages of differentiation treated with HC in a murine MPN model. This study was replicated in MPN patients by profiling genome-wide gene expression and DNA methylation using patient blood samples collected longitudinally, before and following HC exposure. The effects of HC on the transcriptome were not only associated with cell cycle interruption but also with hematopoietic functions. Moreover, a group of genes were restored to normal expression levels in murine hematopoietic stem cells (HSCs) following drug treatment, including the master regulator of hematopoiesis, RUNX1 In humans, HC significantly modifies DNA methylation levels in HSCs at several distal regulatory regions, which we show to be associated with SPI1 binding sites and at the SPI1 locus itself. We have identified novel targets of HC that include pivotal transcription factors involved in hematopoiesis, and for the first time we report abnormal methylation patterns in MPN patients at the master regulator gene SPI1 and its distal binding sites, which HC is able to restore to normal levels.


Subject(s)
DNA Methylation , Neoplasms , Animals , Hematopoiesis/genetics , Humans , Hydroxyurea/pharmacology , Mice , Neoplasms/genetics , Transcriptome
5.
mBio ; 12(3): e0136921, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154423

ABSTRACT

The interactions between a virus and its host are complex but can be broadly categorized as either viral manipulation of cellular functions or cellular responses to infection. These processes begin at the earliest point of contact between virus and cell and frequently result in changes to cellular gene expression, making genome-wide transcriptomics a useful tool to study them. Several previous studies have used transcriptomics to evaluate the cellular responses to human immunodeficiency virus type 1 (HIV-1) infection; however, none have examined events in primary CD4+ T cells during the first 24 h of infection. Here, we analyzed CD4+ T cells at 4.5, 8, 12, 24, and 48 h following infection. We describe global changes to host gene expression commencing at 4.5 h postinfection and evolving over the ensuing time points. We identify upregulation of genes related to innate immunity, cytokine production, and apoptosis and downregulation of those involved in transcription and translation. We further demonstrate that the viral accessory protein Vpr is necessary for almost all gene expression changes seen at 12 h postinfection and the majority of those seen at 48 h. Identifying this new role for Vpr not only provides fresh perspective on its possible function but also adds further insight into the interplay between HIV-1 and its host at the cellular level. IMPORTANCE HIV-1, while now treatable, remains an important human pathogen causing significant morbidity and mortality globally. The virus predominantly infects CD4+ T cells and, if not treated with medication, ultimately causes their depletion, resulting in AIDS and death. Further refining our understanding of the interaction between HIV-1 and these cells has the potential to inform further therapeutic development. Previous studies have used transcriptomics to assess gene expression changes in CD4+ T cells following HIV-1 infection; here, we provide a detailed examination of changes occurring in the first 24 h of infection. Importantly, we define the viral protein Vpr as essential for the changes observed at this early stage. This finding has significance for understanding the role of Vpr in infection and pathogenesis and also for interpreting previous transcriptomic analyses of HIV-1 infection.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV-1/genetics , Host-Pathogen Interactions , Transcriptome/genetics , vpr Gene Products, Human Immunodeficiency Virus/genetics , Apoptosis , Cells, Cultured , HIV-1/pathogenicity , Humans , Time Factors , Virus Replication
6.
Nucleic Acids Res ; 48(15): 8349-8359, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32621610

ABSTRACT

Alternative splicing (AS) and alternative polyadenylation (APA) generate diverse transcripts in mammalian genomes during development and differentiation. Epigenetic marks such as trimethylation of histone H3 lysine 36 (H3K36me3) and DNA methylation play a role in generating transcriptome diversity. Intragenic CpG islands (iCGIs) and their corresponding host genes exhibit dynamic epigenetic and gene expression patterns during development and between different tissues. We hypothesise that iCGI-associated H3K36me3, DNA methylation and transcription can influence host gene AS and/or APA. We investigate H3K36me3 and find that this histone mark is not a major regulator of AS or APA in our model system. Genomewide, we identify over 4000 host genes that harbour an iCGI in the mammalian genome, including both previously annotated and novel iCGI/host gene pairs. The transcriptional activity of these iCGIs is tissue- and developmental stage-specific and, for the first time, we demonstrate that the premature termination of host gene transcripts upstream of iCGIs is closely correlated with the level of iCGI transcription in a DNA-methylation independent manner. These studies suggest that iCGI transcription, rather than H3K36me3 or DNA methylation, interfere with host gene transcription and pre-mRNA processing genomewide and contributes to the spatiotemporal diversification of both the transcriptome and proteome.


Subject(s)
Epigenesis, Genetic , Protein Processing, Post-Translational/genetics , RNA Precursors/genetics , Transcription, Genetic , Animals , Cell Differentiation/genetics , Chromatin/genetics , CpG Islands/genetics , DNA Methylation/genetics , Genome/genetics , Histone Code/genetics , Humans , Promoter Regions, Genetic , Pseudogenes/genetics , RNA Precursors/metabolism
7.
Rev Sci Instrum ; 91(5): 053103, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32486715

ABSTRACT

Optical studies of materials at high pressure-temperature (P-T) conditions provide insights into their physical properties that may be inaccessible to direct determination at extreme conditions. Incandescent light sources, however, are insufficiently bright to optically probe samples with radiative temperatures above ∼1000 K. Here we report on a system to perform optical absorption experiments in a laser-heated diamond anvil cell at T up to at least 4000 K. This setup is based on a pulsed supercontinuum (broadband) light probe and a gated CCD detector. Precise and tight synchronization of the detector gates (3 ns) to the bright probe pulses (1 ns) diminishes the recorded thermal background and preserves an excellent probe signal at high temperature. We demonstrate the efficiency of this spectroscopic setup by measuring the optical absorbance of solid and molten (Mg,Fe)SiO3, an important constituent of planetary mantles, at P ∼30 GPa and T ∼1200 K to 4150 K. Optical absorbance of the hot solid (Mg,Fe)SiO3 is moderately sensitive to temperature but increases abruptly upon melting and acquires a strong temperature dependence. Our results enable quantitative estimates of the opacity of planetary mantles with implications to their thermal and electrical conductivities, all of which have never been constrained at representative P-T conditions, and call for an optical detection of melting in silicate-bearing systems to resolve the extant ambiguity in their high-pressure melting curves.

8.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31748389

ABSTRACT

CpG dinucleotides are suppressed in the genomes of many vertebrate RNA viruses, including HIV-1. The cellular antiviral protein ZAP (zinc finger antiviral protein) binds CpGs and inhibits HIV-1 replication when CpGs are introduced into the viral genome. However, it is not known if ZAP-mediated restriction is the only mechanism driving CpG suppression. To determine how CpG dinucleotides affect HIV-1 replication, we increased their abundance in multiple regions of the viral genome and analyzed the effect on RNA expression, protein abundance, and infectious-virus production. We found that the antiviral effect of CpGs was not correlated with their abundance. Interestingly, CpGs inserted into some regions of the genome sensitize the virus to ZAP antiviral activity more efficiently than insertions into other regions, and this sensitivity can be modulated by interferon treatment or ZAP overexpression. Furthermore, the sensitivity of the virus to endogenous ZAP was correlated with its sensitivity to the ZAP cofactor KHNYN. Finally, we show that CpGs in some contexts can also inhibit HIV-1 replication by ZAP-independent mechanisms, and one of these is the activation of a cryptic splice site at the expense of a canonical splice site. Overall, we show that the location and sequence context of the CpG in the viral genome determines its antiviral activity.IMPORTANCE Some RNA virus genomes are suppressed in the nucleotide combination of a cytosine followed by a guanosine (CpG), indicating that they are detrimental to the virus. The antiviral protein ZAP binds viral RNA containing CpGs and prevents the virus from multiplying. However, it remains unknown how the number and position of CpGs in viral genomes affect restriction by ZAP and whether CpGs have other antiviral mechanisms. Importantly, manipulating the CpG content in viral genomes could help create new vaccines. HIV-1 shows marked CpG suppression, and by introducing CpGs into its genome, we show that ZAP efficiently targets a specific region of the viral genome, that the number of CpGs does not predict the magnitude of antiviral activity, and that CpGs can inhibit HIV-1 gene expression through a ZAP-independent mechanism. Overall, the position of CpGs in the HIV-1 genome determines the magnitude and mechanism through which they inhibit the virus.


Subject(s)
Dinucleoside Phosphates/metabolism , Gene Expression Regulation, Viral/physiology , HIV-1/physiology , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Virus Replication/physiology , Dinucleoside Phosphates/genetics , HEK293 Cells , Humans , Muramidase , Peptide Fragments , RNA, Viral/genetics , RNA-Binding Proteins/genetics
9.
Sci Rep ; 7(1): 17595, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29242640

ABSTRACT

We investigated whether maternal metabolic environment affects mesenchymal stromal/stem cells (MSCs) from umbilical cord's Wharton's Jelly (WJ) on a molecular level, and potentially render them unsuitable for clinical use in multiple recipients. In this pilot study on umbilical cords post partum from healthy non-obese (BMI = 19-25; n = 7) and obese (BMI ≥ 30; n = 7) donors undergoing elective Cesarean section, we found that WJ MSC from obese donors showed slower population doubling and a stronger immunosuppressive activity. Genome-wide DNA methylation of triple positive (CD73+CD90+CD105+) WJ MSCs found 67 genes with at least one CpG site where the methylation difference was ≥0.2 in four or more obese donors. Only one gene, PNPLA7, demonstrated significant difference on methylome, transcriptome and protein level. Although the number of analysed donors is limited, our data suggest that the altered metabolic environment related to excessive body weight might bear consequences on the WJ MSCs.


Subject(s)
Mesenchymal Stem Cells/pathology , Mothers , Obesity/pathology , Wharton Jelly/pathology , Adult , CD56 Antigen/metabolism , Case-Control Studies , Cell Differentiation , DNA Methylation , Down-Regulation , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunomodulation , Lipase/genetics , Lysophospholipase , Mesenchymal Stem Cells/metabolism , Obesity/genetics , Obesity/immunology , Obesity/metabolism , Pilot Projects , Pregnancy
12.
Nat Immunol ; 17(2): 204-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26726811

ABSTRACT

Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years. Wide-ranging adverse clinical events can seriously confound vaccine adoption, but whether there are immunological correlates of these is unknown. Here we identify a molecular signature of adverse events that was commonly associated with an existing B cell phenotype. Thus immunophenotypic variation among healthy humans may be manifest in complex pathophysiological responses.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Adjuvants, Immunologic , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cluster Analysis , Cytokines/blood , Cytokines/metabolism , Female , Gene Expression Profiling , Humans , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Male , Middle Aged , Myeloid Cells/immunology , Myeloid Cells/metabolism , Phenotype , Time Factors , Transcriptome , Vaccination , Young Adult
13.
Hum Mutat ; 36(12): 1135-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26394720

ABSTRACT

Genetic heterogeneity presents a significant challenge for the identification of monogenic disease genes. Whole-exome sequencing generates a large number of candidate disease-causing variants and typical analyses rely on deleterious variants being observed in the same gene across several unrelated affected individuals. This is less likely to occur for genetically heterogeneous diseases, making more advanced analysis methods necessary. To address this need, we present HetRank, a flexible gene-ranking method that incorporates interaction network data. We first show that different genes underlying the same monogenic disease are frequently connected in protein interaction networks. This motivates the central premise of HetRank: those genes carrying potentially pathogenic variants and whose network neighbors do so in other affected individuals are strong candidates for follow-up study. By simulating 1,000 exome sequencing studies (20,000 exomes in total), we model varying degrees of genetic heterogeneity and show that HetRank consistently prioritizes more disease-causing genes than existing analysis methods. We also demonstrate a proof-of-principle application of the method to prioritize genes causing Adams-Oliver syndrome, a genetically heterogeneous rare disease. An implementation of HetRank in R is available via the Website http://sourceforge.net/p/hetrank/.


Subject(s)
Computational Biology/methods , Exome , Genetic Association Studies/methods , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Software , Computer Simulation , Epistasis, Genetic , Gene Regulatory Networks , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Humans , Protein Interaction Mapping/methods , Web Browser
14.
PLoS Pathog ; 11(1): e1004609, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25590131

ABSTRACT

The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G) and APOBEC3F (A3F), act as potent human immunodeficiency virus type-1 (HIV-1) restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC) region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA) and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC) fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.


Subject(s)
Cytosine Deaminase/metabolism , HIV-1/physiology , RNA, Small Untranslated/metabolism , Virus Assembly/physiology , APOBEC Deaminases , APOBEC-3G Deaminase , Autoantigens/metabolism , Cells, Cultured , Cytidine Deaminase/metabolism , HEK293 Cells , HeLa Cells , Humans , Protein Binding , RNA, Small Cytoplasmic/metabolism , Ribonucleoproteins/metabolism , Signal Recognition Particle/metabolism
15.
Article in English | MEDLINE | ID: mdl-25478011

ABSTRACT

BACKGROUND: Epigenetic reprogramming during early mammalian embryonic and germ cell development is a genome-wide process. CpG islands (CGIs), central to the regulation of mammalian gene expression, are exceptional in terms of whether, when and how they are affected by epigenetic reprogramming. RESULTS: We investigated the DNA sequences of CGIs in the context of genome-wide data on DNA methylation and transcription during oogenesis and early embryogenesis to identify signals associated with methylation establishment and protection from de novo methylation in oocytes and associated with post-fertilisation methylation maintenance. We find no evidence for a characteristic DNA sequence motif in oocyte-methylated CGIs. Neither do we find evidence for a general role of regular CpG spacing in methylation establishment at CGIs in oocytes. In contrast, the resistance of most CGIs to de novo methylation during oogenesis is associated with the motif CGCGC, the recognition site of E2f1 and E2f2, transcription factors highly expressed specifically in oocytes. This association is independent of prominent known hypomethylation-associated factors: CGI promoter activity, H3K4me3, Cfp1 binding or R-loop formation potential. CONCLUSIONS: Our results support a DNA sequence-independent and transcription-driven model of de novo CGI methylation during oogenesis. In contrast, our results for CGIs that remain unmethylated are consistent with a model of protection from methylation involving sequence recognition by DNA-binding proteins, E2f1 and E2f2 being probable candidates.

16.
Nature ; 502(7472): 559-62, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24048477

ABSTRACT

Animal cells harbour multiple innate effector mechanisms that inhibit virus replication. For the pathogenic retrovirus human immunodeficiency virus type 1 (HIV-1), these include widely expressed restriction factors, such as APOBEC3 proteins, TRIM5-α, BST2 (refs 4, 5) and SAMHD1 (refs 6, 7), as well as additional factors that are stimulated by type 1 interferon (IFN). Here we use both ectopic expression and gene-silencing experiments to define the human dynamin-like, IFN-induced myxovirus resistance 2 (MX2, also known as MXB) protein as a potent inhibitor of HIV-1 infection and as a key effector of IFN-α-mediated resistance to HIV-1 infection. MX2 suppresses infection by all HIV-1 strains tested, has equivalent or reduced effects on divergent simian immunodeficiency viruses, and does not inhibit other retroviruses such as murine leukaemia virus. The Capsid region of the viral Gag protein dictates susceptibility to MX2, and the block to infection occurs at a late post-entry step, with both the nuclear accumulation and chromosomal integration of nascent viral complementary DNA suppressed. Finally, human MX1 (also known as MXA), a closely related protein that has long been recognized as a broadly acting inhibitor of RNA and DNA viruses, including the orthomyxovirus influenza A virus, does not affect HIV-1, whereas MX2 is ineffective against influenza virus. MX2 is therefore a cell-autonomous, anti-HIV-1 resistance factor whose purposeful mobilization may represent a new therapeutic approach for the treatment of HIV/AIDS.


Subject(s)
HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Interferons/immunology , Myxovirus Resistance Proteins/metabolism , Cell Line , Cell Nucleus/genetics , Cell Nucleus/virology , Cells, Cultured , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/classification , HIV-1/enzymology , HIV-1/genetics , Humans , Myxovirus Resistance Proteins/deficiency , Myxovirus Resistance Proteins/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA, Viral/metabolism , Reverse Transcription/genetics , Species Specificity , Substrate Specificity , Virus Integration , Virus Replication
17.
Genome Res ; 23(10): 1624-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23804403

ABSTRACT

DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.


Subject(s)
Brain/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Methylation , DNA/metabolism , Genomic Imprinting , Repressor Proteins/metabolism , Alleles , Animals , Binding Sites , CCCTC-Binding Factor , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Mammalian , Computational Biology , Gene Expression Regulation , Genetic Loci , Genome , High-Throughput Nucleotide Sequencing , Mice , Organ Specificity , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA , Cohesins
18.
PLoS One ; 8(12): e84383, 2013.
Article in English | MEDLINE | ID: mdl-24391948

ABSTRACT

Alagille syndrome is an autosomal dominant disorder involving bile duct paucity and cholestasis in addition to cardiac, skeletal, ophthalmologic, renal and vascular manifestations. Mutations in JAG1, encoding a ligand in the Notch signaling pathway, are found in 95% of patients meeting clinical criteria for Alagille syndrome. In order to define the role of Jag1 in the bile duct developmental abnormalities seen in ALGS, we previously created a Jag1 conditional knockout mouse model. Mice heterozygous for the Jag1 conditional and null alleles demonstrate abnormalities in postnatal bile duct growth and remodeling, with portal expansion and increased numbers of malformed bile ducts. In this study we report the results of microarray analysis and identify genes and pathways differentially expressed in the Jag1 conditional/null livers as compared with littermate controls. In the initial microarray analysis, we found that many of the genes up-regulated in the Jag1 conditional/null mutant livers were related to extracellular matrix (ECM) interactions, cell adhesion and cell migration. One of the most highly up-regulated genes was Ddr1, encoding a receptor tyrosine kinase (RTK) belonging to a large RTK family. We have found extensive co-localization of Jag1 and Ddr1 in bile ducts and blood vessels in postnatal liver. In addition, co-immunoprecipitation data provide evidence for a novel protein interaction between Jag1 and Ddr1. Further studies will be required to define the nature of this interaction and its functional consequences, which may have significant implications for bile duct remodeling and repair of liver injury.


Subject(s)
Alagille Syndrome/genetics , Bile Ducts/abnormalities , Calcium-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Membrane Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Alagille Syndrome/pathology , Animals , Azo Compounds , Blotting, Western , Calcium-Binding Proteins/genetics , Discoidin Domain Receptor 1 , Extracellular Matrix/metabolism , Fluorescent Antibody Technique , Immunoprecipitation , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein , Liver/blood supply , Membrane Proteins/genetics , Mice , Mice, Knockout , Microarray Analysis , Real-Time Polymerase Chain Reaction , Receptor Protein-Tyrosine Kinases/genetics , Serrate-Jagged Proteins
19.
Mol Cell ; 47(6): 909-20, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22902559

ABSTRACT

Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.


Subject(s)
Cadherins/genetics , DNA Methylation , Embryo, Mammalian/metabolism , Genomic Imprinting , Germ Cells/metabolism , Oocytes/metabolism , Animals , Blastocyst/metabolism , Embryo, Mammalian/cytology , Fertilization , Genetic Testing , Mice , Pseudogenes , Sequence Analysis, DNA
20.
Nucleic Acids Res ; 40(18): 8917-26, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22790983

ABSTRACT

Alternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms. Here, we demonstrate that allele-specific polyadenylation occurs at another imprinted locus with similar features. Nap1l5 is a retrogene expressed from the paternally inherited allele, is situated within an intron of a 'host' gene Herc3, and overlaps a CpG island that is differentially methylated between the parental alleles. In mouse brain, internal Herc3 polyadenylation sites upstream of Nap1l5 are used on the paternally derived chromosome, from which Nap1l5 is expressed, whereas a downstream site is used more frequently on the maternally derived chromosome. Ablating DNA methylation on the maternal allele at the Nap1l5 promoter increases the use of an internal Herc3 polyadenylation site and alters exon splicing. These changes demonstrate the influence of epigenetic mechanisms in regulating Herc3 alternative mRNA processing. Internal Herc3 polyadenylation correlates with expression levels of Nap1l5, suggesting a possible role for transcriptional interference. Similar mechanisms may regulate alternative polyadenylation elsewhere in the genome.


Subject(s)
Genetic Loci , Genomic Imprinting , Nerve Tissue Proteins/genetics , Polyadenylation , Ubiquitin-Protein Ligases/genetics , Alleles , Animals , DNA Methylation , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Nuclear Proteins , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Transcription, Genetic , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...