Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1239600, 2023.
Article in English | MEDLINE | ID: mdl-38094000

ABSTRACT

Background: Tree mycorrhizal types (arbuscular mycorrhizal fungi and ectomycorrhizal fungi) alter nutrient use traits and leaf physicochemical properties and, thus, affect leaf litter decomposition. However, little is known about how different tree mycorrhizal species affect the microbial diversity, community composition, function, and community assembly processes that govern leaf litter-dwelling microbes during leaf litter decomposition. Methods: In this study, we investigated the microbial diversity, community dynamics, and community assembly processes of nine temperate tree species using high-resolution molecular technique (Illumina sequencing), including broadleaved arbuscular mycorrhizal, broadleaved ectomycorrhizal, and coniferous ectomycorrhizal tree types, during leaf litter decomposition. Results and discussion: The leaves and needles of different tree mycorrhizal types significantly affected the microbial richness and community composition during leaf litter decomposition. Leaf litter mass loss was related to higher sequence reads of a few bacterial functional groups, particularly N-fixing bacteria. Furthermore, a link between bacterial and fungal community composition and hydrolytic and/or oxidative enzyme activity was found. The microbial communities in the leaf litter of different tree mycorrhizal types were governed by different proportions of determinism and stochasticity, which changed throughout litter decomposition. Specifically, determinism (mainly variable selection) controlling bacterial community composition increased over time. In contrast, stochasticity (mainly ecological drift) increasingly governed fungal community composition. Finally, the co-occurrence network analysis showed greater competition between bacteria and fungi in the early stages of litter decomposition and revealed a contrasting pattern between mycorrhizal types. Conclusion: Overall, we conclude that tree mycorrhizal types influence leaf litter quality, which affects microbial richness and community composition, and thus, leaf litter decomposition.

2.
Tree Physiol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37941495

ABSTRACT

Carbon (C) assimilation can be severely impaired during periods of environmental stress like drought or defoliation, making trees heavily dependent on the use of C reserve pools for survival; yet, dynamics of reserve use during periods of reduced C supply are still poorly understood. We used stem girdling in mature poplar trees (Populus tremula L. hybrids), a lipid-storing species, to permanently interrupt phloem C transport and induced C shortage in the isolated stem section below the girdle and monitored metabolic activity during three campaigns in the growing seasons of 2018, 2019, and 2021. We measured respiratory fluxes (CO2 and O2), NSC concentration, the respiratory substrate (based on isotopic analysis and CO2/O2 ratio) and the age of the respiratory substrate (based on radiocarbon analysis). Our study shows that poplar trees can survive long periods of reduced C supply from the canopy by switching in metabolism from recent carbohydrates to older storage pools with a potential mixture of respiratory substrates, including lipids. This mechanism of stress resilience can explain why tree decline may take many years until death occurs.

3.
Sci Total Environ ; 873: 162230, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796697

ABSTRACT

Poly(butylene succinate-co-adipate) (PBSA) degradation and its plastisphere microbiome in cropland soils have been studied; however, such knowledge is limited in the case of forest ecosystems. In this context, we investigated: i) the impact of forest types (conifer and broadleaved forests) on the plastisphere microbiome and its community assembly, ii) their link to PBSA degradation, and iii) the identities of potential microbial keystone taxa. We determined that forest type significantly affected microbial richness (F = 5.26-9.88, P = 0.034 to 0.006) and fungal community composition (R2 = 0.38, P = 0.001) of the plastisphere microbiome, whereas its effects on microbial abundance and bacterial community composition were not significant. The bacterial community was governed by stochastic processes (mainly homogenizing dispersal), whereas the fungal community was driven by both stochastic and deterministic processes (drift and homogeneous selection). The highest molar mass loss was found for PBSA degraded under Pinus sylvestris (26.6 ± 2.6 to 33.9 ± 1.8 % (mean ± SE) at 200 and 400 days, respectively), and the lowest molar mass loss was found under Picea abies (12.0 ± 1.6 to 16.0 ± 0.5 % (mean ± SE) at 200 and 400 days, respectively). Important fungal PBSA decomposers (Tetracladium) and atmospheric dinitrogen (N2)-fixing bacteria (symbiotic: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Methylobacterium and non-symbiotic: Mycobacterium) were identified as potential keystone taxa. The present study is among the first to determine the plastisphere microbiome and its community assembly processes associated with PBSA in forest ecosystems. We detected consistent biological patterns in the forest and cropland ecosystems, indicating a potential mechanistic interaction between N2-fixing bacteria and Tetracladium during PBSA biodegradation.


Subject(s)
Biodegradable Plastics , Microbiota , Trees , Soil , Forests , Bacteria/metabolism , Adipates/metabolism , Succinates/metabolism , Soil Microbiology
4.
Ann Bot ; 131(5): 769-787, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36805162

ABSTRACT

BACKGROUND AND AIMS: Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. METHODS: We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. KEY RESULTS: East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. CONCLUSIONS: Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.


Subject(s)
Quercus , Phylogeny , Quercus/genetics , Ecosystem , Forests , Base Sequence
6.
Microb Ecol ; 85(2): 411-428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35124727

ABSTRACT

Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.


Subject(s)
Mycobiome , Trees , Trees/microbiology , Fungi , Plant Leaves/microbiology
7.
Front Plant Sci ; 13: 968218, 2022.
Article in English | MEDLINE | ID: mdl-36407586

ABSTRACT

Despite the abundance of observations of foliar pathogens, our knowledge is severely lacking regarding how the potential fungal pathobiome is structured and which processes determine community assembly. In this study, we addressed these questions by analysing the potential fungal pathobiome associated with the senescing leaves and needles of 12 temperate tree species. We compared fungal plant pathogen load in the senescing leaves/needles and demonstrated that healthy-looking leaves/needles are inhabited by diverse and distinct fungal plant pathogens. We detected 400 fungal plant pathogenic ASVs belonging to 130 genera. The fungal plant pathogenic generalist, Mycosphaerella, was found to be the potential most significant contributor to foliar disease in seedlings. The analyses of assembly process and co-occurrence network showed that the fungal plant pathogenic communities in different tree types are mainly determined by stochastic processes. However, the homogenising dispersal highly contributes in broadleaf trees, whereas ecological drift plays an important role in coniferious trees. The deterministic assembly processes (dominated by variable selection) contributed more in broadleaf trees as compared to coniferous trees. We found that pH and P level significantly corresponded with fungal plant pathogenic community compositions in both tree types. Our study provides the first insight and mechanistic understanding into the community assembly, networks, and complete taxonomy of the foliar fungal pathobiome in senescing leaves and needles.

8.
Front Microbiol ; 13: 907531, 2022.
Article in English | MEDLINE | ID: mdl-36187953

ABSTRACT

Currently, lichen surveys are generally based on the examination of fruiting bodies. Lichens in the mycelial stage, in spores, or awaiting conditions for fruiting body formation are usually overlooked, even though they are important for maintaining biodiversity and ecosystem functions. This study aimed to explore the lichenized fungal community composition and richness associated with leaves and needles of 12 temperate tree species using Illumina MiSeq-based amplicon sequencing of the internal transcribed spacer (ITS) 2 region. Picea abies harbored the highest richness and number of lichenized fungal species. We found that the lichenized fungus Physcia adscendens dominated the leaves and needles of the most temperate tree species. Eleven lichenized fungal species detected in this study were recorded for the first time on leaves and needles. In addition, we identified Athallia cerinella, Fellhanera bouteillei, and Melanohalea exasperata that are on the German national red lists. Lichenized fungal richness was higher in conifer compared to broadleaf trees. Overall, tree species (within coniferous trees) and tree types (broadleaved vs. coniferous trees) harbored significantly different lichenized fungal community compositions pointing out the importance of host species. Diversity and community composition patterns of lichenized fungi were correlated mainly with tree species. Our study demonstrates that the diversity of foliicolous lichens associated with leaves and needles of 12 temperate tree species can be appropriately analyzed and functionally assigned using the ITS-based high-throughput sequencing. We highlighted the importance of conifers for maintaining the biodiversity of foliicolous lichens. Based on the discovery of many red list lichens, our methodological approach and results are important contributions to subsequent actions in the bio-conversation approaches.

9.
Plant J ; 109(4): 909-926, 2022 02.
Article in English | MEDLINE | ID: mdl-34808015

ABSTRACT

Standard models of plant speciation assume strictly dichotomous genealogies in which a species, the ancestor, is replaced by two offspring species. The reality in wind-pollinated trees with long evolutionary histories is more complex: species evolve from other species through isolation when genetic drift exceeds gene flow; lineage mixing can give rise to new species (hybrid taxa such as nothospecies and allopolyploids). The multi-copy, potentially multi-locus 5S rDNA is one of few gene regions conserving signal from dichotomous and reticulate evolutionary processes down to the level of intra-genomic recombination. Therefore, it can provide unique insights into the dynamic speciation processes of lineages that diversified tens of millions of years ago. Here, we provide the first high-throughput sequencing (HTS) of the 5S intergenic spacers (5S-IGS) for a lineage of wind-pollinated subtropical to temperate trees, the Fagus crenata - F. sylvatica s.l. lineage, and its distant relative F. japonica. The observed 4963 unique 5S-IGS variants reflect a complex history of hybrid origins, lineage sorting, mixing via secondary gene flow, and intra-genomic competition between two or more paralogous-homoeologous 5S rDNA lineages. We show that modern species are genetic mosaics and represent a striking case of ongoing reticulate evolution during the past 55 million years.


Subject(s)
DNA, Ribosomal/genetics , Evolution, Molecular , Fagus/genetics , Pollination , Trees/genetics , DNA, Intergenic , Gene Flow , High-Throughput Nucleotide Sequencing , Phylogeny , RNA, Ribosomal, 5S/genetics , Wind
10.
Plants (Basel) ; 10(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34685901

ABSTRACT

Drought events weaken trees and make them vulnerable to attacks by diverse plant pathogens. Here, we propose a molecular method for fast screening of microorganisms associated with European beech decline after an extreme drought period (2018) in a forest of Thuringia, Germany. We used Illumina sequencing with a recent bioinformatics approach based on DADA2 to identify archaeal, bacterial, and fungal ASVs (amplicon sequence variants) based on bacterial and archaeal 16S and fungal ITS genes. We show that symptomatic beech trees are associated with both bacterial and fungal plant pathogens. Although the plant pathogen sequences were detected in both discolored and non-discolored wood areas, they were highly enriched in the discolored wood areas. We show that almost each individual tree was associated with a different combination of pathogens. Cytospora spp. and Neonectria coccinea were among the most frequently detected fungal pathogens, whereas Erwinia spp. and Pseudomonas spp. were the dominant bacterial plant pathogens. We demonstrate that bacterial plant pathogens may be of major importance in beech decline.

11.
Plant Cell Environ ; 44(8): 2522-2535, 2021 08.
Article in English | MEDLINE | ID: mdl-34096615

ABSTRACT

Little is known about the sources and age of C respired by tree roots. Previous research in stems identified two functional pools of non-structural carbohydrates (NSC): an "active" pool supplied directly from canopy photo-assimilates supporting metabolism and a "stored" pool used when fresh C supplies are limited. We compared the C isotope composition of water-soluble NSC and respired CO2 for aspen roots (Populus tremula hybrids) cut off from fresh C supply after stem-girdling or prolonged incubation of excised roots. We used bomb radiocarbon to estimate the time elapsed since C fixation for respired CO2 , water-soluble NSC and structural α-cellulose. While freshly excised roots (mostly <2.9 mm in diameter) respired CO2 fixed <1 year previously, the age increased to 1.6-2.9 year within a week after root excision. Freshly excised roots from trees girdled ~3 months ago had respiration rates and NSC stocks similar to un-girdled trees but respired older C (~1.2 year). We estimate that over 3 months NSC in girdled roots must be replaced 5-7 times by reserves remobilized from root-external sources. Using a mixing model and observed correlations between Δ14 C of water-soluble C and α-cellulose, we estimate ~30% of C is "active" (~5 mg C g-1 ).


Subject(s)
Carbon/metabolism , Plant Roots/metabolism , Populus/metabolism , Trees/metabolism , Carbohydrate Metabolism , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon Radioisotopes/analysis , Cellulose/metabolism , Forests , Germany
12.
Sci Adv ; 7(20)2021 05.
Article in English | MEDLINE | ID: mdl-33990326

ABSTRACT

Land-use intensification poses major threats to biodiversity, such as to insect herbivore communities. The stability of these communities depends on interactions linking herbivores and host plants. How interaction network structure begets robustness, and thus stability, in different ecosystems and how network structure and robustness are altered along land-use intensity gradients are unclear. We analyzed plant-herbivore networks based on literature-derived interactions and long-term sampling from 289 grasslands and forests in three regions of Germany. Network size and nestedness were the most important determinants of network robustness in both ecosystems. Along land-use intensity gradients, networks in moderately grazed grasslands were more robust than in those managed by frequent mowing or fertilization. In forests, changes of network robustness along land-use intensity gradients relied on changes in plant species richness. Our results expand our knowledge of the stability of plant-herbivore networks and indicate options for management aimed at stabilizing herbivore communities.

13.
Microorganisms ; 9(2)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672221

ABSTRACT

Using 642 forest plots from three regions in Germany, we analyzed the direct and indirect effects of forest management intensity and of environmental variables on lichen functional diversity (FDis). Environmental stand variables were affected by management intensity and acted as an environmental filter: summing direct and indirect effects resulted in a negative total effect of conifer cover on FDis, and a positive total effect of deadwood cover and standing tree biomass. Management intensity had a direct positive effect on FDis, which was compensated by an indirect negative effect via reduced standing tree biomass and lichen species richness, resulting in a negative total effect on FDis and the FDis of adaptation-related traits (FDisAd). This indicates environmental filtering of management and stronger niche partitioning at a lower intensity. In contrast, management intensity had a positive total effect on the FDis of reproduction-, dispersal- and establishment-related traits (FDisRe), mainly because of the direct negative effect of species richness, indicating functional over-redundancy, i.e., most species cluster into a few over-represented functional entities. Our findings have important implications for forest management: high lichen functional diversity can be conserved by promoting old, site-typical deciduous forests with a high richness of woody species and large deadwood quantity.

14.
Mol Ecol Resour ; 21(2): 495-510, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32997899

ABSTRACT

Measuring biological diversity is a crucial but difficult undertaking, as exemplified in oaks where complex patterns of morphological, ecological, biogeographical and genetic differentiation collide with traditional taxonomy, which measures biodiversity in number of species (or higher taxa). In this pilot study, we generated high-throughput sequencing amplicon data of the intergenic spacer of the 5S nuclear ribosomal DNA cistron (5S-IGS) in oaks, using six mock samples that differ in geographical origin, species composition and pool complexity. The potential of the marker for automated genotaxonomy applications was assessed using a reference data set of 1,770 5S-IGS cloned sequences, covering the entire taxonomic breadth and distribution range of western Eurasian Quercus, and applying similarity (blast) and evolutionary approaches (maximum-likelihood trees and Evolutionary Placement Algorithm). Both methods performed equally well, allowing correct identification of species in sections Ilex and Cerris in the pure and mixed samples, and main lineages shared by species of sect. Quercus. Application of different cut-off thresholds revealed that medium- to high-abundance (>10 or 25) sequences suffice for a net species identification of samples containing one or a few individuals. Lower thresholds identify phylogenetic correspondence with all target species in highly mixed samples (analogous to environmental bulk samples) and include rare variants pointing towards reticulation, incomplete lineage sorting, pseudogenic 5S units and in situ (natural) contamination. Our pipeline is highly promising for future assessments of intraspecific and interpopulation diversity, and of the genetic resources of natural ecosystems, which are fundamental to empower fast and solid biodiversity conservation programmes worldwide.


Subject(s)
Genome, Plant , Quercus , Algorithms , Ecosystem , High-Throughput Nucleotide Sequencing , Phylogeny , Pilot Projects , Quercus/genetics , Sequence Analysis, DNA
15.
Nat Ecol Evol ; 4(12): 1602-1611, 2020 12.
Article in English | MEDLINE | ID: mdl-33020598

ABSTRACT

Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.


Subject(s)
Ecosystem , Plants , Biodiversity , Biomass , Carbon
17.
Nat Ecol Evol ; 4(9): 1204-1212, 2020 09.
Article in English | MEDLINE | ID: mdl-32661404

ABSTRACT

The habitat heterogeneity hypothesis predicts that biodiversity increases with increasing habitat heterogeneity due to greater niche dimensionality. However, recent studies have reported that richness can decrease with high heterogeneity due to stochastic extinctions, creating trade-offs between area and heterogeneity. This suggests that greater complexity in heterogeneity-diversity relationships (HDRs) may exist, with potential for group-specific responses to different facets of heterogeneity that may only be partitioned out by a simultaneous test of HDRs of several species groups and several facets of heterogeneity. Here, we systematically decompose habitat heterogeneity into six major facets on ~500 temperate forest plots across Germany and quantify biodiversity of 12 different species groups, including bats, birds, arthropods, fungi, lichens and plants, representing 2,600 species. Heterogeneity in horizontal and vertical forest structure underpinned most HDRs, followed by plant diversity, deadwood and topographic heterogeneity, but the relative importance varied even within the same trophic level. Among substantial HDRs, 53% increased monotonically, consistent with the classical habitat heterogeneity hypothesis but 21% were hump-shaped, 25% had a monotonically decreasing slope and 1% showed no clear pattern. Overall, we found no evidence of a single generalizable mechanism determining HDR patterns.


Subject(s)
Biodiversity , Ecosystem , Animals , Birds , Germany , Plants
18.
New Phytol ; 226(4): 1198-1212, 2020 05.
Article in English | MEDLINE | ID: mdl-31609470

ABSTRACT

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Subject(s)
Quercus , Gene Flow , Genomics , Phylogeny , Quercus/genetics , Sequence Analysis, DNA
19.
Nature ; 574(7780): 671-674, 2019 10.
Article in English | MEDLINE | ID: mdl-31666721

ABSTRACT

Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number-but not abundance-decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices.


Subject(s)
Arthropods , Biomass , Animals , Biodiversity , Conservation of Natural Resources , Forests , Germany , Grassland
20.
Nat Commun ; 10(1): 4757, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628336

ABSTRACT

Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data.


Subject(s)
Biodiversity , Forests , Radar , Remote Sensing Technology/methods , Trees/physiology , Animals , Birds/classification , Birds/physiology , Coleoptera/classification , Coleoptera/physiology , Conservation of Natural Resources/methods , Models, Theoretical , Reproducibility of Results , Spatio-Temporal Analysis , Trees/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...