Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Res Metr Anal ; 7: 1010504, 2022.
Article in English | MEDLINE | ID: mdl-36437858

ABSTRACT

Reporting and presentation of research activities and outcome for research institutions in official, normative standards are more and more important and are the basis to comply with reporting duties. Institutional Current Research Information Systems (CRIS) serve as important databases or data sources for external and internal reporting, which should ideally be connected with interfaces to the operational systems for automated loading routines to extract relevant research information. This investigation evaluates whether (semi-) automated reporting using open, public research information collected via persistent identifiers (PIDs) for organizations (ROR), persons (ORCID), and research outputs (DOI) can reduce effort of reporting. For this purpose, internally maintained lists of persons to whom an ORCID record could be assigned (internal ORCID person lists) of two different German research institutions-Osnabrück University (UOS) and the non-university research institution TIB-Leibniz Information Center for Science and Technology Hannover-are used to investigate ORCID coverage in external open data sources like FREYA PID Graph (developed by DataCite), OpenAlex and ORCID itself. Additionally, for UOS a detailed analysis of discipline specific ORCID coverage is conducted. Substantial differences can be found for ORCID coverage between both institutions and for each institution regarding the various external data sources. A more detailed analysis of ORCID distribution by discipline for UOS reveals disparities by research area-internally and in external data sources. Recommendations for future actions can be derived from our results: Although the current level of coverage of researcher IDs which could automatically be mapped is still not sufficient to use persistent identifier-based extraction for standard (automated) reporting, it can already be a valuable input for institutional CRIS.

2.
BMC Ecol Evol ; 22(1): 51, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35473550

ABSTRACT

BACKGROUND: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.


Subject(s)
Microscopy , Rainforest , Animals , Bees/genetics , Biological Monitoring , Crops, Agricultural/genetics , DNA Barcoding, Taxonomic , Ecosystem , Indonesia , Pollen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...