Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4283, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383610

ABSTRACT

The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.


Subject(s)
Magnoliopsida , Taraxacum , Rubber/metabolism , Taraxacum/genetics , Taraxacum/metabolism , Magnoliopsida/metabolism , Epigenomics , Gene Expression Regulation, Plant , Plant Breeding , Epigenesis, Genetic , Russia , Flowers/physiology
2.
Front Plant Sci ; 14: 1228961, 2023.
Article in English | MEDLINE | ID: mdl-37841614

ABSTRACT

Introduction: Plant growth and greening in response to light require the synthesis of photosynthetic pigments such as chlorophylls and carotenoids, which are derived from isoprenoid precursors. In Arabidopsis, the pseudo-etiolated-in-light phenotype is caused by the overexpression of repressor of photosynthetic genes 2 (RPGE2), which regulates chlorophyll synthesis and photosynthetic genes. Methods: We investigated a homologous protein in the Russian dandelion (Taraxacum koksaghyz) to determine its influence on the rich isoprenoid network in this species, using a combination of in silico analysis, gene overexpression, transcriptomics and metabolic profiling. Results: Homology-based screening revealed a gene designated pseudo-etiolated-in-light-like (TkPEL-like), and in silico analysis identified a light-responsive G-box element in its promoter. TkPEL-like overexpression in dandelion plants and other systems reduced the levels of chlorophylls and carotenoids, but this was ameliorated by the mutation of one or both conserved cysteine residues. Comparative transcriptomics in dandelions overexpressing TkPEL-like showed that genes responsible for the synthesis of isoprenoid precursors and chlorophyll were downregulated, probably explaining the observed pale green leaf phenotype. In contrast, genes responsible for carotenoid synthesis were upregulated, possibly in response to feedback signaling. The evaluation of additional differentially expressed genes revealed interactions between pathways. Discussion: We propose that TkPEL-like negatively regulates chlorophyll- and photosynthesis-related genes in a light-dependent manner, which appears to be conserved across species. Our data will inform future studies addressing the regulation of leaf isoprenoid biosynthesis and photomorphogenesis and could be used in future breeding strategies to optimize selected plant isoprenoid profiles and generate suitable plant-based production platforms.

3.
New Phytol ; 239(4): 1475-1489, 2023 08.
Article in English | MEDLINE | ID: mdl-36597727

ABSTRACT

Laticifers are hypothesized to mediate both plant-herbivore and plant-microbe interactions. However, there is little evidence for this dual function. We investigated whether the major constituent of natural rubber, cis-1,4-polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha). Rubber-depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near-isogenic lines. Melolontha melolontha preferred to feed on artificial diet supplemented with rubber-depleted rather than normal rubber content latex. Likewise, adding purified cis-1,4-polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics and metabarcoding revealed that abolishing biosynthesis of natural rubber alters the structure but not the diversity of the rhizosphere and root microbiota (ecto- and endophytes) and that these changes depended on M. melolontha damage. However, the assumption that rubber reduces microbial colonization or pathogen load is contradicted by four lines of evidence. Taken together, our data demonstrate that natural rubber biosynthesis reduces herbivory and alters the plant microbiota, which highlights the role of plant-specialized metabolites and secretory structures in shaping multitrophic interactions.


Subject(s)
Coleoptera , Taraxacum , Animals , Rubber/chemistry , Rubber/metabolism , Latex/metabolism , Herbivory , Larva , Plants, Genetically Modified/metabolism , Taraxacum/genetics
4.
Front Genet ; 12: 784883, 2021.
Article in English | MEDLINE | ID: mdl-35140739

ABSTRACT

The Russian dandelion (Taraxacum koksaghyz, family Asteraceae) produces large amounts of natural rubber in the laticifers of its roots. This species has been proposed as an alternative source of natural rubber to augment or partly replace the rubber tree (Hevea brasiliensis) but domestication would require genetic improvement to increase rubber yields and agronomic optimization to facilitate harvesting and processing. Optimization has focused thus far on the size and shape of the roots, the primary storage organ for natural rubber and inulin. However, the corresponding genetic factors are poorly understood. Here we describe the comparative transcriptomic analysis of root tissues from T. koksaghyz plant sets featuring different root sizes and shapes, aiming to identify differentially expressed genes correlating with root length or root diameter in the upper root and root tip. The resulting datasets revealed multiple candidate genes for each trait and root part, including a glucan endo-1,3-ß-d-glucosidase, an allene oxide synthase 3, and a TIFY10A/JAZ1 homolog. These three genes were tested by qRT-PCR in outdoor-grown plants with diverse root morphology, and the expression of two genes correlated with the appropriate root morphotype, confirming the effectiveness of our method. We evaluated the candidate genes to gain insight into their potential functions in root development. Such candidate genes could be suitable for marker-assisted breeding programs in the future.

5.
Bioengineering (Basel) ; 7(4)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114339

ABSTRACT

Farnesyl diphosphate (FPP)-derived isoprenoids represent a diverse group of plant secondary metabolites with great economic potential. To enable their efficient production in the heterologous host Saccharomyces cerevisiae, we refined a metabolic engineering strategy using the CRISPR/Cas9 system with the aim of increasing the availability of FPP for downstream reactions. The strategy included the overexpression of mevalonate pathway (MVA) genes, the redirection of metabolic flux towards desired product formation and the knockout of genes responsible for competitive reactions. Following the optimisation of culture conditions, the availability of the improved FPP biosynthesis for downstream reactions was demonstrated by the expression of a germacrene synthase from dandelion. Subsequently, biosynthesis of significant amounts of germacrene-A was observed in the most productive strain compared to the wild type. Thus, the presented strategy is an excellent tool to increase FPP-derived isoprenoid biosynthesis in yeast.

6.
J Exp Bot ; 71(4): 1278-1293, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31740929

ABSTRACT

Taraxacum koksaghyz has been identified as one of the most promising alternative rubber crops. Its high-quality rubber is produced in the latex of laticifers, a specialized cell type that is organized in a network of elongated tubules throughout the entire plant body. In order to gain insights into the physiological role(s) of latex and hence laticifer biology, we examine the effects of barnase-induced latex RNA degradation on the metabolite and protein compositions in the roots. We established high-quality datasets that enabled precise discrimination between cellular and physiological processes in laticifers and non-laticifer cell types of roots at different vegetative stages. We identified numerous latex-specific proteins, including a perilipin-like protein that has not been studied in plants yet. The barnase-expressing plants revealed a phenotype that did not exude latex, which may provide a valuable genetic basis for future studies of plant-environment interactions concerning latex and also help to clarify the evolution and arbitrary distribution of latex throughout the plant kingdom. The overview of temporal changes in composition and protein abundance provided by our data opens the way for a deeper understanding of the molecular interactions, reactions, and network relationships that underlie the different metabolic pathways in the roots of this potential rubber crop.


Subject(s)
Latex , Taraxacum , Biology , Metabolome , Proteome
7.
Molecules ; 24(15)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349555

ABSTRACT

In addition to natural rubber (NR), several triterpenes are synthesized in laticifers of the Russian dandelion (Taraxacum koksaghyz). Detailed analysis of NR and resin contents revealed different concentrations of various pentacyclic triterpenes such as α-, ß-amyrin and taraxasterol, which strongly affect the mechanical properties of the resulting rubber material. Therefore, the reduction of triterpene content would certainly improve the industrial applications of dandelion NR. We developed T. koksaghyz plants with reduced triterpene contents by tissue-specific downregulation of major laticifer-specific oxidosqualene cyclases (OSCs) by RNA interference, resulting in an almost 67% reduction in the triterpene content of NR. Plants of the T1 generation showed no obvious phenotypic changes and the rubber yield also remained unaffected. Hence, this study will provide a solid basis for subsequent modern breeding programs to develop Russian dandelion plants with low and stable triterpene levels.


Subject(s)
Intramolecular Transferases/deficiency , Latex/chemistry , Plant Roots/chemistry , Rubber/chemistry , Taraxacum/chemistry , Taraxacum/genetics , Triterpenes/chemistry , Gene Expression Regulation, Plant , Plant Development/genetics , Plants, Genetically Modified , RNA Interference
8.
Plant J ; 100(3): 591-609, 2019 11.
Article in English | MEDLINE | ID: mdl-31342578

ABSTRACT

The Russian dandelion Taraxacum koksaghyz synthesizes considerable amounts of high-molecular-weight rubber in its roots. The characterization of factors that participate in natural rubber biosynthesis is fundamental for the establishment of T. koksaghyz as a rubber crop. The cis-1,4-isoprene polymers are stored in rubber particles. Located at the particle surface, the rubber transferase complex, member of the cis-prenyltransferase (cisPT) enzyme family, catalyzes the elongation of the rubber chains. An active rubber transferase heteromer requires a cisPT subunit (CPT) as well as a CPT-like subunit (CPTL), of which T. koksaghyz has two homologous forms: TkCPTL1 and TkCPTL2, which potentially associate with the rubber transferase complex. Knockdown of TkCPTL1, which is predominantly expressed in latex, led to abolished poly(cis-1,4-isoprene) synthesis but unaffected dolichol content, whereas levels of triterpenes and inulin were elevated in roots. Analyses of latex from these TkCPTL1-RNAi plants revealed particles that were similar to native rubber particles regarding their particle size, phospholipid composition, and presence of small rubber particle proteins (SRPPs). We found that the particles encapsulated triterpenes in a phospholipid shell stabilized by SRPPs. Conversely, downregulating the low-expressed TkCPTL2 showed no altered phenotype, suggesting its protein function is redundant in T. koksaghyz. MS-based comparison of latex proteomes from TkCPTL1-RNAi plants and T. koksaghyz wild-types discovered putative factors that convert metabolites in biosynthetic pathways connected to isoprenoids or that synthesize components of the rubber particle shell.


Subject(s)
Butadienes/metabolism , Hemiterpenes/metabolism , Latex/biosynthesis , Proteome , Taraxacum/genetics , Transferases/metabolism , Carbon/metabolism , Gene Knockdown Techniques , Inulin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Taraxacum/metabolism , Transferases/genetics , Triterpenes/metabolism
9.
PLoS One ; 14(5): e0217454, 2019.
Article in English | MEDLINE | ID: mdl-31125376

ABSTRACT

The Russian dandelion (Taraxacum koksaghyz) is a promising source of inulin and natural rubber because large amounts of both feedstocks can be extracted from its roots. However, the domestication of T. koksaghyz requires the development of stable agronomic traits such as higher yields of inulin and natural rubber, a higher root biomass, and an agronomically preferable root morphology which is more suitable for cultivation and harvesting. Arabidopsis thaliana Rapid Alkalinisation Factor 1 (RALF1) has been shown to suppress root growth. We identified the T. koksaghyz orthologue TkRALF-like 1 and knocked out the corresponding gene (TkRALFL1) using the CRISPR/Cas9 system to determine its impact on root morphology, biomass, and inulin and natural rubber yields. The TkRALFL1 knockout lines more frequently developed a taproot phenotype which is easier to cultivate and harvest, as well as a higher root biomass and greater yields of both inulin and natural rubber. The TkRALFL1 gene could therefore be suitable as a genetic marker to support the breeding of profitable new dandelion varieties with improved agronomic traits. To our knowledge, this is the first study addressing the root system of T. koksaghyz to enhance the agronomic performance.


Subject(s)
Loss of Function Mutation , Peptide Hormones/genetics , Plant Proteins/genetics , Plant Roots/genetics , Taraxacum/genetics , Biomass , CRISPR-Cas Systems , Gene Expression Regulation, Plant , Plant Roots/anatomy & histology , Plant Roots/growth & development , Taraxacum/anatomy & histology , Taraxacum/growth & development
10.
Sci Rep ; 9(1): 5942, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976052

ABSTRACT

Only very little is known about the resin composition of natural rubber from the dandelion species Taraxacum koksaghyz, thus its full characterization could provide new insights into how the isoprenoid end-products influence the physical properties of natural rubber, and this resin might be a good source of highly diverse triterpenoids. Here, we present a comprehensive analysis of the triterpenoid composition in an acetone extract and identified 13 triterpenes and triterpenoids also including the so far unknown pentacyclic compounds lup-19(21)-en-3-ol (1) and its ketone lup-19(21)-en-3-one (2). We purified single triterpenes from the acetone extract by developing a two-step HPLC system that is adapted to the structural differences of the described triterpenoids. Furthermore, we isolated six different oxidosqualene cyclases (OSCs) and two P450 enzymes, and we functionally characterized TkOSC1 and CYP716A263 in Nicotiana benthamiana and Saccharomyces cerevisiae in detail. TkOSC1 is a multifunctional OSC that was capable of synthesizing at least four of the latex-predominant pentacyclic triterpenes (taraxasterol, α-, ß-amyrin and lup-19(21)-en-3-ol) while CYP716A263 oxidized pentacyclic triterpenes at the C-3 position. The identified enzymes responsible for biosynthesis and modification of pentacyclic triterpenes in T. koksaghyz latex may represent excellent tools for bioengineering approaches to produce pentacyclic triterpenes heterologously.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Intramolecular Transferases/metabolism , Latex/metabolism , Plant Proteins/metabolism , Taraxacum/metabolism , Triterpenes/metabolism , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Plant , Intramolecular Transferases/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics
11.
Biotechnol Rep (Amst) ; 20: e00290, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30568884

ABSTRACT

A protein named TbREF that is localized on rubber particles of the rubber producing dandelion species Taraxacum brevicorniculatum was expressed in tobacco leaves and in yeast. TbREF fused to fluorescence proteins colocalized on globular, hydrophobic structures, most likely lipid droplets. Furthermore, triacylglycerol, sterol and total lipid content of TbREF expressing yeast was determined by photometric analyses of nile red stainings and GC-MS analyses. Therefore, yeast exposed an enhanced nile red fluorescence as well as an increased TAG and sterol content compared to wildtype and vector control. Altogether, these findings gave new insights into the putative function of TbREF that might be pushing rubber particle production due to its cytotoxic nature and/or shielding and preventing degradation of lipid droplets. Furthermore, these results highlight possible biotechnological applications regarding the accumulation of hydrophobic compounds in lipid droplet like structures.

12.
Electron. j. biotechnol ; 36: 15-23, nov. 2018. tab, ilus, graf
Article in English | LILACS | ID: biblio-1047981

ABSTRACT

Background: Taraxacum officinale G.H. Weber ex Wiggers is a wild plant used in folk medicine to treat several diseases owing to bioactive secondary metabolites present in its tissue. The accumulation of such molecules in plant cells can occur as a response against abiotic stress, but these metabolites are often deposited in low concentrations. For this reason, the use of a biotechnological approach to improve the yields of technologically interesting bioactive compounds such as anthocyanins is a compelling option. This work focuses on investigating the potential of in vitro T. officinale cultures as an anthocyanin source. Results: To demonstrate the suitability of anthocyanin induction and accumulation in calluses under specific conditions, anthocyanin was induced in the T. officinale callus. A specific medium of 5.5% sucrose supplemented with 6-benzylaminopurine /1-naphthaleneacetic acid in a 10:1 ratio was used to produce an anthocyanin yield of 1.23 mg g-1 fw. An in vitro dandelion callus line was established from this experiment. Five mathematical models were then used to objectively and predictably explain the growth of anthocyanin-induced calluses from T. officinale. Of these models, the Richards model offered the most suitable representation of anthocyanin callus growth in a solid medium and permitted the calculation of the corresponding kinetic parameters. Conclusions: The findings demonstrate the potential of an in vitro anthocyanin-induced callus line from T. officinale as an industrial anthocyanin source.


Subject(s)
Taraxacum/growth & development , Plant Development , Anthocyanins/metabolism , In Vitro Techniques , Kinetics , Plant Cells , Phytochemicals
13.
Appl Microbiol Biotechnol ; 102(16): 6923-6934, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29948122

ABSTRACT

Pentacyclic triterpenes are diverse plant secondary metabolites derived from the mevalonate (MVA) pathway. Many of these molecules are potentially valuable, particularly as pharmaceuticals, and research has focused on their production in simpler and more amenable heterologous systems such as the yeast Saccharomyces cerevisiae. We have developed a new heterologous platform for the production of pentacyclic triterpenes in S. cerevisiae based on a combinatorial engineering strategy involving the overexpression of MVA pathway genes, the knockout of negative regulators, and the suppression of a competing pathway. Accordingly, we overexpressed S. cerevisiae ERG13, encoding 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, and a truncated and deregulated variant of the rate-limiting enzyme HMG-CoA reductase 1 (tHMGR). In the same engineering step, we deleted the ROX1 gene, encoding a negative regulator of the MVA pathway and sterol biosynthesis, resulting in a push-and-pull strategy to enhance metabolic flux through the system. In a second step, we redirected this enhanced metabolic flux from late sterol biosynthesis to the production of 2,3-oxidosqualene, the direct precursor of pentacyclic triterpenes. In yeast cells transformed with a newly isolated sequence encoding lupeol synthase from the Russian dandelion (Taraxacum koksaghyz), we increased the yield of pentacyclic triterpenes by 127-fold and detected not only high levels of lupeol but also a second valuable pentacyclic triterpene product, ß-amyrin.


Subject(s)
Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Industrial Microbiology/methods , Mevalonic Acid/metabolism , Saccharomyces cerevisiae/genetics , Sterols/biosynthesis , Triterpenes/metabolism , Gene Deletion , Gene Knockout Techniques , Saccharomyces cerevisiae Proteins/genetics
14.
Plant J ; 93(6): 1045-1061, 2018 03.
Article in English | MEDLINE | ID: mdl-29377321

ABSTRACT

Natural rubber biosynthesis occurs on rubber particles, i.e. organelles resembling small lipid droplets localized in the laticifers of latex-containing plant species, such as Hevea brasiliensis and Taraxacum brevicorniculatum. The latter expresses five small rubber particle protein (SRPP) isoforms named TbSRPP1-5, the most abundant proteins in rubber particles. These proteins maintain particle stability and are therefore necessary for rubber biosynthesis. TbSRPP1-5 were transiently expressed in Nicotiana benthamiana protoplasts and the proteins were found to be localized on lipid droplets and in the endoplasmic reticulum, with TbSRPP1 and TbSRPP3 also present in the cytosol. Bimolecular fluorescence complementation confirmed pairwise interactions between all proteins except TbSRPP2. The corresponding genes showed diverse expression profiles in young T. brevicorniculatum plants exposed to abiotic stress, and all except TbSRPP4 and TbSRPP5 were upregulated. Young Arabidopsis thaliana plants that overexpressed TbSRPP2 and TbSRPP3 tolerated drought stress better than wild-type plants. Furthermore, we used rubber particle extracts and standards to investigate the affinity of the TbSRPPs for different phospholipids, revealing a preference for negatively charged head groups and 18:2/16:0 fatty acid chains. This finding may explain the effect of TbSRPP3-5 on the dispersity of artificial poly(cis-1,4-isoprene) bodies and on the lipid droplet distribution we observed in N. benthamiana leaves. Our data provide insight into the assembly of TbSRPPs on rubber particles, their role in rubber particle structure, and the link between rubber biosynthesis and lipid droplet-associated stress responses, suggesting that SRPPs form the basis of evolutionarily conserved intracellular complexes in plants.


Subject(s)
Hemiterpenes/metabolism , Inclusion Bodies/metabolism , Latex/metabolism , Lipid Droplets/metabolism , Taraxacum/metabolism , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Phospholipids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stress, Physiological , Taraxacum/genetics
15.
Plant Direct ; 2(6): e00063, 2018 Jun.
Article in English | MEDLINE | ID: mdl-31245726

ABSTRACT

The Russian dandelion Taraxacum koksaghyz produces high-value isoprenoids such as pentacyclic triterpenes and natural rubber in the latex of specialized cells known as laticifers. Squalene synthase (SQS) and squalene epoxidase (SQE) catalyze key steps in the biosynthesis of cyclic terpenoids, but neither enzyme has yet been characterized in T. koksaghyz. Genomic analysis revealed the presence of two genes (TkSQS1 and TkSQS2) encoding isoforms of SQS, and four genes (TkSQE1-4) encoding isoforms of SQE. Spatial expression analysis in different T. koksaghyz tissues confirmed that TkSQS1 and TkSQE1 are the latex-predominant isoforms, with highly similar mRNA expression profiles. The TkSQS1 and TkSQE1 proteins colocalized in the endoplasmic reticulum membrane and their enzymatic functions were confirmed by in vitro activity assays and yeast complementation studies, respectively. The functions of TkSQS1 and TkSQE1 were further characterized in the latex of T. koksaghyz plants with depleted TkSQS1 or TkSQE1 mRNA levels, produced by RNA interference. Comprehensive expression analysis revealed the coregulation of TkSQS1 and TkSQE1, along with a downstream gene in the triterpene biosynthesis pathway encoding the oxidosqualene cyclase TkOSC1. This indicates that the coregulation of TkSQS1, TkSQE1, and TkOSC1 could be used to optimize the flux toward specific terpenoids during development.

16.
BMC Plant Biol ; 17(1): 88, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28532507

ABSTRACT

BACKGROUND: Latex from the dandelion species Taraxacum brevicorniculatum contains many high-value isoprenoid end products, e.g. triterpenes and polyisoprenes such as natural rubber. The isopentenyl pyrophosphate units required as precursors for these isoprenoids are provided by the mevalonate (MVA) pathway. The key enzyme in this pathway is 3-hydroxy-methyl-glutaryl-CoA reductase (HMGR) and its activity has been thoroughly characterized in many plant species including dandelion. However, two enzymes acting upstream of HMGR have not been characterized in dandelion latex: ATP citrate lyase (ACL), which provides the acetyl-CoA utilized in the MVA pathway, and acetoacetyl-CoA thiolase (AACT), which catalyzes the first step in the pathway to produce acetoacetyl-CoA. Here we isolated ACL and AACT genes from T. brevicorniculatum latex and characterized their expression profiles. We also overexpressed the well-characterized HMGR, ACL and AACT genes from Arabidopsis thaliana in T. brevicorniculatum to determine their impact on isoprenoid end products in the latex. RESULTS: The spatial and temporal expression profiles of T. brevicorniculatum ACL and AACT revealed their pivotal role in the synthesis of precursors necessary for isoprenoid biosynthesis in latex. The overexpression of A. thaliana ACL and AACT and HMGR in T. brevicorniculatum latex resulted in the accumulation of all three enzymes, increased the corresponding enzymatic activities and ultimately increased sterol levels by ~5-fold and pentacyclic triterpene and cis-1,4-isoprene levels by ~2-fold. Remarkably high levels of the triterpene precursor squalene were also detected in the triple-transgenic lines (up to 32 mg/g root dry weight) leading to the formation of numerous lipid droplets which were observed in root cross-sections. CONCLUSIONS: We could show the effective expression of up to three transgenes in T. brevicorniculatum latex which led to increased enzymatic activity and resulted in high level squalene accumulation in the dandelion roots up to an industrially relevant amount. Our data provide insight into the regulation of the MVA pathway in dandelion latex and can be used as a basis for metabolic engineering to enhance the production of isoprenoid end products in this specialized tissue.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Acetyl-CoA C-Acetyltransferase/metabolism , Latex/metabolism , Taraxacum/metabolism , Terpenes/metabolism , ATP Citrate (pro-S)-Lyase/genetics , Acetyl-CoA C-Acetyltransferase/genetics , Gene Expression Regulation, Plant , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent/metabolism , Mevalonic Acid/metabolism , Pentacyclic Triterpenes/metabolism , Phytosterols/metabolism , Squalene/metabolism , Taraxacum/genetics
17.
Plant Biotechnol J ; 15(6): 740-753, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27885764

ABSTRACT

Natural rubber (NR) is an important raw material for a large number of industrial products. The primary source of NR is the rubber tree Hevea brasiliensis, but increased worldwide demand means that alternative sustainable sources are urgently required. The Russian dandelion (Taraxacum koksaghyz Rodin) is such an alternative because large amounts of NR are produced in its root system. However, rubber biosynthesis must be improved to develop T. koksaghyz into a commercially feasible crop. In addition to NR, T. koksaghyz also produces large amounts of the reserve carbohydrate inulin, which is stored in parenchymal root cell vacuoles near the phloem, adjacent to apoplastically separated laticifers. In contrast to NR, which accumulates throughout the year even during dormancy, inulin is synthesized during the summer and is degraded from the autumn onwards when root tissues undergo a sink-to-source transition. We carried out a comprehensive analysis of inulin and NR metabolism in T. koksaghyz and its close relative T. brevicorniculatum and functionally characterized the key enzyme fructan 1-exohydrolase (1-FEH), which catalyses the degradation of inulin to fructose and sucrose. The constitutive overexpression of Tk1-FEH almost doubled the rubber content in the roots of two dandelion species without any trade-offs in terms of plant fitness. To our knowledge, this is the first study showing that energy supplied by the reserve carbohydrate inulin can be used to promote the synthesis of NR in dandelions, providing a basis for the breeding of rubber-enriched varieties for industrial rubber production.


Subject(s)
Inulin/metabolism , Metabolic Engineering/methods , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Taraxacum/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Taraxacum/genetics , Triterpenes/metabolism
18.
PLoS Biol ; 14(1): e1002332, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26731567

ABSTRACT

Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid ß-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.


Subject(s)
Coleoptera , Glucosides/metabolism , Herbivory , Lactones/metabolism , Latex/metabolism , Sesquiterpenes/metabolism , Taraxacum/metabolism , Animals , Biomass , Glucosides/isolation & purification , Lactones/isolation & purification , Larva , Latex/chemistry , Plant Roots/metabolism , RNA Interference , Reproduction , Sesquiterpenes/isolation & purification , Taraxacum/chemistry , Taraxacum/genetics
19.
Plant J ; 82(4): 609-20, 2015 May.
Article in English | MEDLINE | ID: mdl-25809497

ABSTRACT

Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production.


Subject(s)
Plant Proteins/metabolism , Rubber/metabolism , Taraxacum/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Taraxacum/genetics
20.
Plant Cell Physiol ; 54(4): 448-64, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23303876

ABSTRACT

Natural rubber is a high-molecular-mass biopolymer found in the latex of >2,500 plant species, including Hevea brasiliensis, Parthenium argentatum and Taraxacum spp. The active sites of rubber biosynthesis are rubber particles, which comprise a hydrophobic rubber core surrounded by a phospholipid monolayer membrane containing species-dependent lipids and associated proteins. Small rubber particle proteins are the most abundant rubber particle-associated proteins in Taraxacum brevicorniculatum (TbSRPPs) and may promote rubber biosynthesis by stabilizing the rubber particle architecture. We investigated the transcriptional regulation of genes encoding SRPPs and identified a bZIP transcription factor (TbbZIP.1) similar to the Arabidopsis thaliana ABI5-ABF-AREB subfamily, which is thought to include downstream targets of ABA and/or abiotic stress-inducible protein kinases. The TbbZIP.1 gene was predominantly expressed in laticifers and regulates the expression of TbSRPP genes in an ABA-dependent manner. The individual TbSRPP genes showed distinct induction profiles, suggesting diverse roles in rubber biosynthesis and stress adaptation. The potential involvement of TbSRPPs in the adaptation of T. brevicorniculatum plants to environmental stress is discussed based on our current knowledge of the stress-response roles of SRPPs and their homologs, and the protective function of latex and rubber against pathogens. Our data suggest that TbSRPPs contribute to stress tolerance in T. brevicorniculatum and that their effects are mediated by TbbZIP.1.


Subject(s)
Abscisic Acid/pharmacology , Basic-Leucine Zipper Transcription Factors/metabolism , Plant Proteins/metabolism , Taraxacum/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Latex/metabolism , Plant Proteins/genetics , Taraxacum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...